Have a personal or library account? Click to login
Open Access
|Jan 2021

References

  1. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.
  2. L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity index for image quality assessment,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2378–2386, Aug. 2011.
  3. W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude similarity deviation: A highly effificient perceptual image quality index,” IEEE Trans. Image Process., vol. 23, no. 2, pp. 684–695, Feb. 2014.
  4. W. Sun, Q. Liao, J. Xue, and F. Zhou, “SPSIM: A superpixel-based similarity index for full-reference image quality assessment,” IEEE Trans. Image Process., vol. 27, no. 9, pp. 4232–4244, Sept. 2018.
  5. L. Ding, H. Huang, and Y. Zang, “Image quality assessment using directional anisotropy structure measurement,” IEEE Trans. Image Process., vol. 24, no. 4, pp. 1799–1809, Apr. 2017.
  6. X. Zhang, X. Feng, W. Wang, and W. Xue, “Edge strength similarity for image quality assessment,” IEEE Signal Process. Lett., vol. 20, no. 4, pp. 319–322, Apr. 2013.
  7. Z. Wang and A. C. Bovik, “Bottom-up approaches for full-reference image quality assessment,” in Modern image quality assessment, Vermont, VT, USA: Morgan and Claypool, 2006, pp. 17–40.
  8. H. R. Sheikh, A. C. Bovik, and G. de Veciana, “An information fifidelity criterion for image quality assessment using natural scene statistics,” IEEE Trans. Image Process., vol. 14, no. 12, pp. 2117–2128, Dec. 2005.
  9. H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 430–444, Feb. 2006.
  10. Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural similarity for image quality assessment,” in Proc. IEEE Asilomar Conf. Signals, Syst. Comput., Nov. 2003, pp. 1398–1402.
  11. A. Ahar, A. Barri and P. Schelkens, “From Sparse Coding Significance to Perceptual Quality: A New Approach for Image Quality Assessment,” IEEE Trans. Image Process., vol. 27, no. 2, pp. 879-893, Feb. 2018.
  12. N. Ponomarenko, O. Ieremeiev, V. Lukin, K. Egiazarian, L. Jin, J, Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, and C.-C. Jay Kuo, “Color image database TID2013: Peculiarities and preliminary results,” in Proc. 4th Eur. Workshop Vis. Inf. Process., Jun. 2013, pp. 106–111.
  13. N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Battisti, “TID2008A database for evaluation of full-reference visual quality assessment metrics,” Adv. Modern Radioelectron., vol. 10, pp. 30–45, May. 2009.
  14. C. Larson and D. M. Chandler, Categorical Image Quality (CSIQ) Database 2009 [Online]. Available: http://vision.okstate.edu/csiq
  15. H. R. Sheikh, K. Seshadrinathan, A. K. Moorthy, Z. Wang, A. C. Bovik, and L. K. Cormack, Image and Video Quality Assessment Research at LIVE 2004 [Online]. Available: http://live.ece.utexas.edu/research/quality
  16. A. Ninassi, P. Le Callet, and F. Autrusseau, Subjective Quality Assessment IVC Database 2005 [Online]. Available: http://www2.irccyn.ecnantes.fr/ivcdb
  17. D. M. Chandler and S. S. Hemami, A57 Database 2007 [Online]. Available: http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.htm
Language: English
Page range: 27 - 33
Published on: Jan 11, 2021
Published by: Xi’an Technological University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Minjuan Gao, Hongshe Dang, Xuande Zhang, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution 4.0 License.