Have a personal or library account? Click to login
By:
Jie Chen and  Li Zhao  
Open Access
|Oct 2019

References

  1. Yilun Lin, Xingyuan Dai, li Li, et al. The new frontier of artificial intelligence research:generative adversarial networks[J]. IEEE/CAA Journal of Automatica Sinica (JAS), 2018, 44(05):775-792.
  2. Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
  3. Gatys L A, Ecker A S, Bethge M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2414-2423.
  4. Kunfeng Wang, Chao Gou, Yanjie Duan, et al. Research progress and prospect of Generative adversarial networks[J] IEEE/CAA Journal of Automatica Sinica (JAS), 2017, 43(03):321-332.
  5. Bengio Y, Laufer E, Alain G, et al. Deep generative stochastic networks trainable by backprop[C]//International Conference on Machine Learning. 2014: 226-234.
  6. Opper M, Archambeau C. The variational Gaussian approximation revisited[J]. Neural computation, 2009, 21(3): 786-792.
  7. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672-2680.
  8. Ratliff L J, Burden S A, Sastry S S. Characterization and computation of local nash equilibria in continuous games[C]//2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2013: 917-924.
  9. Xianlun Tang, Yiming Du, Yuwei Liu et al. An image recognition method based on conditional depth convolution Generative adversarial networks[J] IEEE/CAA Journal of Automatica Sinica (JAS), 2018, 44(05):855-864.
  10. Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2223-2232.
  11. Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
  12. Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
  13. Salimans T, Goodfellow I, Zaremba W, et al. Improved techniques for training gans[C]//Advances in neural information processing systems. 2016: 2234-2242.
  14. Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein gans[C]//Advances in Neural Information Processing Systems. 2017: 5767-5777
Language: English
Page range: 93 - 98
Published on: Oct 8, 2019
Published by: Xi’an Technological University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Jie Chen, Li Zhao, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.