Yilun Lin, Xingyuan Dai, li Li, et al. The new frontier of artificial intelligence research:generative adversarial networks[J]. IEEE/CAA Journal of Automatica Sinica (JAS), 2018, 44(05):775-792.
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
Gatys L A, Ecker A S, Bethge M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2414-2423.
Kunfeng Wang, Chao Gou, Yanjie Duan, et al. Research progress and prospect of Generative adversarial networks[J] IEEE/CAA Journal of Automatica Sinica (JAS), 2017, 43(03):321-332.
Bengio Y, Laufer E, Alain G, et al. Deep generative stochastic networks trainable by backprop[C]//International Conference on Machine Learning. 2014: 226-234.
Ratliff L J, Burden S A, Sastry S S. Characterization and computation of local nash equilibria in continuous games[C]//2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2013: 917-924.
Xianlun Tang, Yiming Du, Yuwei Liu et al. An image recognition method based on conditional depth convolution Generative adversarial networks[J] IEEE/CAA Journal of Automatica Sinica (JAS), 2018, 44(05):855-864.
Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2223-2232.
Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
Salimans T, Goodfellow I, Zaremba W, et al. Improved techniques for training gans[C]//Advances in neural information processing systems. 2016: 2234-2242.