Have a personal or library account? Click to login
A New Method of Improving the Traditional Traffic Identification and Accuracy Cover

A New Method of Improving the Traditional Traffic Identification and Accuracy

By: Wang Zhongsheng and  Gao Jiaqiong  
Open Access
|Oct 2019

References

  1. Schulze H, Mochalski K. Internet study 2007[J]. Ipoque Gmbh, 2007.
  2. Madhukar A, Williamson C. A Longitudinal Study of P2P Traffic Classification[C]// IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems. IEEE, 2006:179-188.
  3. Ma J, Levchenko K, Kreibich C, et al. Unexpected means of protocol inference[C]// ACM SIGCOMM Conference on Internet Measurement. ACM, 2006:313-326.
  4. Moore A W, Papagiannaki K. Toward the accurate identification of network applications[C]// International Conference on Passive and Active Network Measurement. Springer-Verlag, 2005:41-54.
  5. Haffner P, Sen S, Spatscheck O, et al. ACAS: automated construction of application signatures[C]// ACM SIGCOMM Workshop on Mining Network Data. ACM, 2005:197-202.
  6. Huang K, Zhang Q, Zhou C, et al. An Efficient Intrusion Detection Approach for Visual Sensor Networks Based on Traffic Pattern Learning[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, PP(99):1-10.
  7. Yuan R, Li Z, Guan X, et al. An SVM-based machine learning method for accurate internet traffic classification[J]. Information Systems Frontiers, 2010, 12(2): 149-156.
  8. I ANA. Internet assigned numbers authority[EB/OL]. http://www.iana.org/assigu mens/port-numbers.
  9. Spatscheck O, Sen S, Wang D. Method and apparatus for automatically constructing application signatures: US, US 7620807 B1[P]. 2009.
  10. Yang C S, Liao M Y, Luo M Y, et al. A Network Management System Based on DPI[C]// International Conference on Network-Based Information Systems. IEEE Computer Society, 2010:385-388.
  11. Hartigan J A, Wong M A. Algorithm AS 136: A K-Means Clustering Algorithm[J]. Journal of the Royal Statistical Society, 1979, 28(1): 100-108.
  12. Liu H, Yu L. Yu L.: Toward Integrating Feature Selection Algorithm for Classification and Clustering. IEEE Transaction on Knowledge and Data Engineering 17(4), 491-502 [J]. IEEE Transactions on Knowledge & Data Engineering, 2005, 17(4):491-502.
  13. Pedro S D S. Collective intelligence as a source for machine learning self-supervision[C]// International Workshop on Web Intelligence & Communities. ACM, 2012:5.
  14. Chapelle O. Semi-supervised Learning (Adaptive Computation and Machine Learning)[J]. Mit Pr, 2006.
  15. Liu S, Dou Z T, Li F, et al. A new ant colony clustering algorithm based on DBSCAN[C]// International Conference on Machine Learning and Cybernetics. IEEE, 2004:1491-1496 vol.3.
  16. Este A, Gringoli F, Salgarelli L. On-line SVM traffic classification[C]// Wireless Communications and Mobile Computing Conference. IEEE, 2011:1778-1783.
  17. Osuna E, Freund R, Girosi F. Training svm: An application to face detection[C]// 1997.
  18. Este A, Gringoli F, Salgarelli L. On-line SVM traffic classification[C]// Wireless Communications and Mobile Computing Conference. IEEE, 2011:1778-1783.
  19. Zhou X. A P2P Traffic Classification Method Based on SVM[C]// International Symposium on Computer Science and Computational Technology. IEEE Computer Society, 2008:53-57.
  20. Bernaille L, Teixeira R, Akodkenou I, et al. Traffic classification on the fly[J]. Acm Sigcomm Computer Communication Review, 2006, 36(2):23-26.
  21. JinHuaXu, HongLiu. Web User Clustering Analysis based on KMeans Algorithm[C]// 2010 international conference on information,networking and automation. 2010:V2-6-V2-9.
  22. Poornalatha G, Raghavendra P S. Web User Session Clustering Using Modified K-Means Algorithm[M]// Advances in Computing and Communications. Springer Berlin Heidelberg, 2011:243-252.
  23. Wang T Z. The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis[M]// Advances in Computer Science and Information Engineering. Springer Berlin Heidelberg, 2012:613-618.
  24. Ye M, Wu J, Xu K, et al. Identify P2P Traffic by Inspecting Data Transfer Behaviour[J]. Computer Communications, 2010, 33(10):1141-1150.
  25. Tapaswi S, Gupta A S. Flow-Based P2P Network Traffic Classification Using Machine Learning[C]// International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. IEEE, 2013:402-406.
  26. Deng H, Yang A M. P2P traffic classification method based on SVM[J]. Computer Engineering & Applications, 2006.
  27. Yang A M, Jiang S Y, Deng H. A P2P Network Traffic Classification Method Using SVM[C]// Young Computer Scientists, 2008. Icycs 2008. the, International Conference for. IEEE, 2008:398-403.
  28. Jiang W, Wang C Z, Luo H F, et al. Research on a Method of P2P Traffic Detection Based on SVM[J]. Journal of Hubei University of Technology, 2010.
  29. Zhu A. A P2P Network Traffic Classification Method Based on C4.5 Decision Tree Algorithm[M]// Proceedings of the 9th International Symposium on Linear Drives for Industry Applications, Volume 4. Springer Berlin Heidelberg, 2014:373-379.
Language: English
Page range: 53 - 60
Published on: Oct 1, 2019
Published by: Xi’an Technological University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Wang Zhongsheng, Gao Jiaqiong, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.