Have a personal or library account? Click to login

An Ensemble Learning Method for Text Classification Based on Heterogeneous Classifiers

Open Access
|May 2018

References

  1. Lai J H. Ensemble Learning for Text Classification[J]. 2017.
  2. Wang G, Sun J, Ma J, et al. Sentiment classification: The contribution of ensemble learning[J]. Decision support systems, 2014, 57: 77–93.
  3. Xia R, Zong C, Li S. Ensemble of feature sets and classification algorithms for sentiment classification[J]. Information Sciences, 2011, 181(6): 1138–1152.
  4. Jia J, Liu Z, Xiao X, et al. pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach[J]. Journal of theoretical biology, 2016, 394: 223–230.
  5. Rodriguez J J, Kuncheva L I, Alonso C J. Rotation forest: A new classifier ensemble method[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(10): 1619–1630.
  6. Wu Z, Lin W, Zhang Z, et al. An Ensemble Random Forest Algorithm for Insurance Big Data Analysis[C]// Computational Science and Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), 2017 IEEE International Conference on. IEEE, 2017, 1: 531–536.
  7. Li N, Jiang Y, Zhou Z H. Multi-label Selective Ensemble[C]// International Workshop on Multiple Classifier Systems. Springer, Cham, 2015: 76–88.
  8. Qian C, Yu Y, Zhou Z H. Pareto Ensemble Pruning[C]// AAAI. 2015: 2935–2941.
Language: English
Page range: 130 - 134
Published on: May 7, 2018
Published by: Xi’an Technological University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Fan Huimin, Li Pengpeng, Zhao Yingze, Li Danyang, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution 4.0 License.