Have a personal or library account? Click to login
An Ensemble Learning Method for Text Classification Based on Heterogeneous Classifiers Cover

An Ensemble Learning Method for Text Classification Based on Heterogeneous Classifiers

Open Access
|May 2018

References

  1. Lai J H. Ensemble Learning for Text Classification[J]. 2017.
  2. Wang G, Sun J, Ma J, et al. Sentiment classification: The contribution of ensemble learning[J]. Decision support systems, 2014, 57: 77–93.
  3. Xia R, Zong C, Li S. Ensemble of feature sets and classification algorithms for sentiment classification[J]. Information Sciences, 2011, 181(6): 1138–1152.
  4. Jia J, Liu Z, Xiao X, et al. pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach[J]. Journal of theoretical biology, 2016, 394: 223–230.
  5. Rodriguez J J, Kuncheva L I, Alonso C J. Rotation forest: A new classifier ensemble method[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(10): 1619–1630.
  6. Wu Z, Lin W, Zhang Z, et al. An Ensemble Random Forest Algorithm for Insurance Big Data Analysis[C]// Computational Science and Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), 2017 IEEE International Conference on. IEEE, 2017, 1: 531–536.
  7. Li N, Jiang Y, Zhou Z H. Multi-label Selective Ensemble[C]// International Workshop on Multiple Classifier Systems. Springer, Cham, 2015: 76–88.
  8. Qian C, Yu Y, Zhou Z H. Pareto Ensemble Pruning[C]// AAAI. 2015: 2935–2941.
Language: English
Page range: 130 - 134
Published on: May 7, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Fan Huimin, Li Pengpeng, Zhao Yingze, Li Danyang, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution 4.0 License.