References
- R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (fpfh) for 3d registration. In Robotics and Automation, 2009. ICRA’09. IEEE International Conferenceon, pages 3212–3217. IEEE, 2009.
- Yasir Salih, A.S. Malik, D. Sidibé, M.T. Simsim, N. Saad and F. Meriaudeau .ompressed VFH descriptor for 3D object classification. 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), 2014.
- Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep representation for volumetric shapes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015, pp. 1912–1920.
- Daniel Maturana,Sebastian Scherer.VoxNet: A 3D Convolutional Neural Network for real-time object recognition. Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on.
- J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeronet al., “Theano: Deep learning on gpus with python,” in NIPS 2011,BigLearning Workshop, Granada, Spain, 2011.
- Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao 3D ShapeNets: A Deep Representation for Volumetric Shape Modeling Proceedings of 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR2015).
- The HDF Group. Why Use HDF?. Retrieved January 4, 2012, from https://www.hdfgroup.org/why-hdf/.
- C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. Guibas.Volumetric and multi-view cnns for object classification on 3d data. In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 2016.
- http://www.cnblogs.com/graphics/archive/2010/08/05/1793393.html The Princeton ModelNet. http://modelnet.cs.
- The Princeton ModelNet. http://modelnet.cs.
- R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014.