Have a personal or library account? Click to login
Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs Cover

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

Open Access
|Feb 2020

References

  1. Bender-deMoll, S. and McFarland, D. A. 2006. The art and science of dynamic network visualization. Journal of Social Structure, 7.
  2. Brandes, U. and Corman, S. R. 2003. Visual unrolling of network evolution and the analysis of dynamic discourse. Information Visualization, 2(1): 40–50, available at: https://doi.org/10.1057/palgrave.ivs.9500037.
  3. Freeman, L. C. 2000. Visualizing social networks. Journal of Social Structure, 1(1): 4, available at: https://www.researchgate.net/profile/Linton_Freeman/publication/242008428_Social_Network_Visualization_Methods_of/links/57516bfc08ae02ac12759651.pdf.
  4. Fruchterman, T. M. J. and Reingold, E. M. 1991. Graph drawing by force-directed placement. Software: Practice and Experience, 21(11): 1129–1164, available at: https://doi.org/10.1002/spe.4380211102.
  5. Ghoniem, M., Fekete, J.-D. and Castagliola, P. 2005. On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Information Visualization, 4(2): 114–135, available at: https://doi.org/10.1057/palgrave.ivs.9500092.
  6. Girvan, M. and Newman, M. E. J. 2002. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12): 7821–7826, available at: https://doi.org/10.1073/pnas.122653799.
  7. Gleiser, P. and Danon, L. 2003. Adv. Complex Syst.6, 565, available at: http://deim.urv.cat/~alexandre.arenas/data/welcome.htm as cited on the Konect website: http://konect.uni-koblenz.de/networks/arenas-jazz.
  8. Gleiser, P. M. and Danon, L. 2003. Community structure in jazz. Advances in Complex Systems 6(4): 565–573, available at: https://www.worldscientific.com/doi/abs/10.1142/S0219525903001067.
  9. Gopalan, P. K., Gerrish, S., Freedman, M., Blei, D. M. and Mimno, D. M. 2012. Scalable inference of overlapping communities. In Pereira, F., Burges, C. J. C., Bottou, L. and Weinberger, K. Q. (Eds), Advances in Neural Information Processing Systems. MIT Press, Cambridge MA, 2249–2257, available at: http://papers.nips.cc/paper/4573-scalable-inference-of-overlapping-communities.pdf.
  10. Jackson, M. O. 2010. Social and Economic Networks, Princeton University Press, Princeton and Oxford.
  11. Kamada, T. and Kawai, S. 1989. An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1): 7–15, available at: https://doi.org/10.1016/0020-0190(89)90102-6.
  12. Lehmann, K. A. and Kottler, S. 2007. Visualizing large and clustered networks. In Kaufmann, M. and Wagner, D. (Eds), Graph Drawing. Springer, Berlin and Heidelberg, 240–251.
  13. Maughan, D. and Carlsten, N. 2018. Transition to Practice Technology Guide. Department of Homeland Security Washington DC, available at: https://www.dhs.gov/sites/default/files/publications/CSD_TTP_Guide_2018_webversion_06262018_508%20Final.pdf.
  14. Moody, J., McFarland, D. and Bender-deMoll, S. 2005. Dynamic network visualization. American Journal of Sociology, 110(4): 1206–1241, https://doi.org/10.1086/421509.
  15. Nocaj, A., Ortmann, M. and Brandes, U. 2014. Untangling hairballs. In Duncan, C. and Symvonis, A. (Eds), Graph Drawing. Springer, Berlin and Heidelberg, 101–112.
  16. Nocaj, A., Ortmann, M. and Brandes, U. 2015. Untangling the hairballs of multi-centered, small-world online social media networks. Journal of Graph Algorithms and Applications 19(2): 595–618, available at: https://doi.org/10.7155/jgaa.00370.
  17. Peterson, E. 2011. Time spring layout for visualization of dynamic social networks. 2011 IEEE Network Science Workshop, 98–104, available at: https://doi.org/10.1109/NSW.2011.6004630.
  18. Sheny, Z. and Maz, K.-L. 2007. Path visualization for adjacency matrices. Proceedings of the 9th Joint Eurographics/IEEE VGTC Conference on Visualization, 83–90, available at: https://doi.org/10.2312/VisSym/EuroVis07/083-090.
  19. Squartini, T., Mastrandrea, R. and Garlaschelli, D. 2015. Unbiased sampling of network ensembles. New Journal of Physics, 17(2): 023052, available at: https://doi.org/10.1088/1367-2630/17/2/023052.
  20. Twitter™ 2018. Twitter™ website, data set regarding election integrity, PERISCOPE, SCOPE and the Periscope logo are trademarks of Twitter, Inc. or its affiliates, available at: https://about.twitter.com/en_us/values/elections-integrity.html#data (accessed November 8, 2018).
  21. Ware, C. 2010. Visual Thinking: for Design. Elsevier, Amsterdam.
  22. Wasserman, S. and Faust, K. 1994. Social network analysis by Stanley Wasserman, Cambridge University Press, available at: https://doi.org/10.1017/CBO9780511815478 (accessed October 29, 2019).
  23. White, H. C., Boorman, S. A. and Breiger, R. L. 1976. Social structure from multiple networks. I. blockmodels of roles and positions. American Journal of Sociology, 81(4): 730–780, available at: https://doi.org/10.1086/226141.
  24. Zweig, K. A. 2016. Network Analysis Literacy: a Practical Approach to the Analysis of Networks. Springer Science & Business Media, Wein, p. 115.
DOI: https://doi.org/10.21307/connections-2019-009 | Journal eISSN: 2816-4245 | Journal ISSN: 0226-1766
Language: English
Page range: 1 - 24
Published on: Feb 28, 2020
Published by: International Network for Social Network Analysis (INSNA)
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Patrick Allen, Mark Matties, Elisha Peterson, published by International Network for Social Network Analysis (INSNA)
This work is licensed under the Creative Commons Attribution 4.0 License.