Have a personal or library account? Click to login
Assessment of microdamage caused by orthodontic miniscrew pilot holes Cover

Assessment of microdamage caused by orthodontic miniscrew pilot holes

Open Access
|Jul 2021

References

  1. 1. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997;31:763-7.
  2. 2. Çehreli S, Arman-Özçırpıcı A. Primary stability and histomorphometric bone-implant contact of self-drilling and selftapping orthodontic microimplants. Am J Orthod Dentofacial Orthop 2012;141:187-95.10.1016/j.ajodo.2011.07.02022284286
  3. 3. Melsen B. Mini-implants: Where are we? J Clin Orthod 2005;39:539-47; quiz 531-2.
  4. 4. Yadav S, Upadhyay M, Liu S, Roberts E, Neace WP, Nanda R. Microdamage of the cortical bone during mini-implant insertion with self-drilling and self-tapping techniques: a randomized controlled trial. Am J Orthod Dentofacial Orthop 2012;141:538-46.10.1016/j.ajodo.2011.12.01622554747
  5. 5. Shank SB, Beck FM, D’Atri AM, Huja SS. Bone damage associated with orthodontic placement of miniscrew implants in an animal model. Am J Orthod Dentofacial Orthop 2012;141:412-8.10.1016/j.ajodo.2011.10.02122464522
  6. 6. Liu SS-Y, Cruz-Marroquin E, Sun J, Stewart KT, Allen MR. Orthodontic mini-implant diameter does not affect in-situ linear microcrack generation in the mandible or the maxilla. Am J Orthod Dentofacial Orthop 2012;142:768-773.10.1016/j.ajodo.2012.07.01423195362
  7. 7. Lee TC, Mohsin S, Taylor D, Parkesh R, Gunnlaugsson T, O’Brien FJ et al. Detecting microdamage in bone. J Anat 2003;203:161-72.10.1046/j.1469-7580.2003.00211.x157115312924817
  8. 8. Wawrzinek C, Sommer T, Fischer-Brandies H. Microdamage in cortical bone due to the overtightening of orthodontic microscrews. J Orofac Orthop 2008;69:121-34.10.1007/s00056-008-0742-518385958
  9. 9. Wilmes B, Drescher D. Impact of bone quality, implant type, and implantation site preparation on insertion torques of miniimplants used for orthodontic anchorage. Int J Oral Maxillofac Surg 2011;40:697-703.10.1016/j.ijom.2010.08.00821458232
  10. 10. Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop 2006;67:162-74.10.1007/s00056-006-0611-z16736117
  11. 11. Di Lello FP, Sgarbi FRVS, Boeck EM, Lunardi N, Neto RJB. Effect of angled installation of orthodontic mini-implants on primary stability. Journal of Research in Dentistry 2014;2:169-75.10.19177/jrd.v2e22014169-75
  12. 12. Wilmes B, Su Y-Y, Drescher D. Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod 2008;78:1065-70.10.2319/100707-484.118947280
  13. 13. Ellis JA, Laskin DM. Analysis of seating and fracturing torque of bicortical screws. J Oral Maxillofac Surg 1994;52:483-6.10.1016/0278-2391(94)90346-8
  14. 14. Chen Y, Shin H-I, Kyung H-M. Biomechanical and histological comparison of self-drilling and self-tapping orthodontic microimplants in dogs. m J Orthod Dentofacial Orthop 2008;133:44-50.10.1016/j.ajodo.2007.01.023
  15. 15. Buschang PH, Carrillo R, Ozenbaugh B, Rossouw PE. 2008 survey of AAO members on miniscrew usage. J Clin Orthod 2008;42:513-8.
  16. 16. Baumgaertel S, Hans MG. Buccal cortical bone thickness for mini-implant placement. Am J Orthod Dentofacial Orthop 2009;136:230-5.10.1016/j.ajodo.2007.10.045
  17. 17. Melsen B, Verna C. Miniscrew implants: the Aarhus anchorage system. Paper presented at: Seminars in Orthodontics 2005;11:24-31.10.1053/j.sodo.2004.11.005
  18. 18. Martin R. Fatigue microdamage as an essential element of bone mechanics and biology. Calcif Tissue Int 2003;73:101-7.10.1007/s00223-002-1059-9
  19. 19. Nguyen MV, Codrington J, Fletcher L, Dreyer CW, Sampson WJ. The influence of miniscrew insertion torque. Eur J Orthod 2018;40:37-44.10.1093/ejo/cjx026
  20. 20. Nguyen MV, Codrington J, Fletcher L, Dreyer CW, Sampson WJ. Influence of cortical bone thickness on miniscrew microcrack formation. Am J Orthod Dentofacial Orthop 2017;152:301-11.10.1016/j.ajodo.2016.12.028
  21. 21. Bertollo N, Walsh WR. Drilling of bone: practicality, limitations and complications associated with surgical drill-bits. In: Biomechanics in Applications. InTech; 2011.10.5772/20931
  22. 22. Ong F, Bouazza-Marouf K. The detection of drill bit break-through for the enhancement of safety in mechatronic assisted orthopaedic drilling. Mechatronics 1999;9:565-88.10.1016/S0957-4158(99)00019-7
  23. 23. Nyman JS, Leng H, Dong XN, Wang X. Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading. J Mech Behav Biomed Mater 2009;2:613-9.10.1016/j.jmbbm.2008.11.008273613319716106
  24. 24. Oltramari PV, Navarro RL, Henriques JF, Capelozza AL, Granjeiro JM. Dental and skeletal characterization of the BR-1 minipig. Vet J 2007;173:399-407.10.1016/j.tvjl.2005.11.00116376127
  25. 25. Boutrand J-P. Biocompatibility and performance of medical devices. Elsevier; 2012.10.1533/9780857096456
  26. 26. Zimmermann C, Thurmüller P, Troulis M, Perrott D, Rahn B, Kaban L. Histology of the porcine mandibular distraction wound. Int J Oral Maxillofac Surg 2005;34:411-9.10.1016/j.ijom.2004.09.00216053852
DOI: https://doi.org/10.21307/aoj-2020-016 | Journal eISSN: 2207-7480 | Journal ISSN: 2207-7472
Language: English
Page range: 146 - 152
Submitted on: Jan 1, 2020
Accepted on: Aug 1, 2020
Published on: Jul 20, 2021
Published by: Australian Society of Orthodontists Inc.
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Sven W. Jensen, Emilija D. Jensen, Wayne J. Sampson, Craig W. Dreyer, published by Australian Society of Orthodontists Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.