References
- Senhadji, Y., Escadeillas, G., Mouli, M., Khelafi, H., & Benosman, S. (2014). Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technology. Elsevier, 254, 314–323.
- Hebhoub, H., & Belachia, M. (2011). Introduction of marble waste sand into hydraulic concrete. Nature and Technology. 41–46.
- Wang, Y., Wu, H.C., Li,V.C. (2000). Concrete reinforcement with recycled fibers, J. Mater. Civil Eng. 12(4) 314–319.
- Saikia, N., & de Brito, J. (2012). Use of plastic waste as aggregate in cement mortar and concrete. Construction and Building Materials, 34, 385–401.
- Abdulrahman, S., Mohammed, T., Mohammed Ali, Kh., Noor, A., Rajab, c., & Nahla, H. (2020). Mechanical Properties of Concrete and Mortar Containing Low Density Polyethylene Waste Particles as Fine Aggregate. Journal of Materials and Engineering Structures, 7, 57–72.
- Azad, K., & Puneet, S. (2019). Use of Plastic Aggregates in Concrete. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(1), 4406-4412. DOI: 10.35940/ijitee.A5088.119119.
- Yin, S., Rabin, T., Shi, F., Combe, M., Collister, T & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction and Building Materials, 93, 180–188.
- Benosman, AS., Taïbi, H., Mouli.M., Senhadji, Y., Belbachir, M., Bahlouli, I.M., & Houivet, D. (2015). L’effet de l’ajout du PET sur les performances mécaniques des matériaux Composites Mortier-PET (Effect of addition of PET on the mechanical performance of PET-Mortar Composite materials). J. Mater. Environ. Sci. 6(2), 559–571.
- Sam, TD., & Tam, MN. (2002). Polymer concrete based on recycled polyethylene terephtalate (PET). NOCMAT/3, Vietnam International conférence on Non-conventional Matérial and technologies, 226–228.
- Ghernouti, Y., & Rabehi, B. (2012). Strength and Durability of Mortar Made with Plastics Bag Waste. (MPBW) International Journal of Concrete Structures and Materials, 6(3), 145–153, DOI 10.1007/s40069-012-0013-0.
- Al-Tulaian, B.S., Al-Shannag, M.J., & Al-Hozaimy, A.R. (2016). Recycled plastic waste fibers for reinforcing Portland cement mortar. Construction and Building Materials 127, 102–110.
- Jay Kim, J.H., Park, C.G., Lee, S-W, Lee,S-W., & Won, J.P. (2008). Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites: Part B 39 442–450.
- Choi, YW., Moon, DJ., Kim, YJ., & Lachemi, M. (2009). Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Constr Build Mater, 23, 2829–35.
- Marzouk, OY., Dheilly, RM., & Queneudec, M. (2007). Valorisation of post-consumer plastic waste in cementitious concrete composites. Waste Manage 27, 310–8.
- Al-Manaseer, AA., & Dalal TR. (1997). Concrete containing plastic aggregates. Concr Int, 19, 47–52.
- Luiz, A., de Oliveira João, P,. & Gomes, C. ( 2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. C-MADE, Centre of Materials and Building Technologies, University of Beira Interior, Calçada Fonte do Lameiro, 6201-001 Covilh, Portugal. Construction and Building Materials, 25, 1712–1717.
- Hannawi, K., Kamali-Bernard, S., & Prince, W. (2010). Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Manage, 30, 2312–2320.
- Hasan, M., Afroz, M., & Mahmud, H. (2011). An experimental investigation on mechanical behavior of macro synthetic fibre reinforced concrete. Int J Civil Environ Eng IJCEE-IJENS, 11(03), 18–23.
- Ismail, Z.Z., & Al-Hashmi, E.A. (2008). Use of plastic waste in concrete mixture as aggregate replacement. Waste Manage, 28, 2041–7.
- Banthia, N,. & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement Concrete Res, 36(7), 1263–7.
- Foti, D. (2011). Preliminary analysis of concrete reinforced with waste bottles PET fibers. Constr Build Mater. 25(4), 1906–15.
- Kou, SC,. Lee, G., Poon, CS., & Lai, WL. (2009). Properties of lightweight aggregate concreteprepared with PVC granules derived from scraped PVC pipes. Waste Manage, 29, 621–8.