Have a personal or library account? Click to login
High Temperature Performance of Self-Compacting Concrete Containing Boron Active Belite Cement Cover

High Temperature Performance of Self-Compacting Concrete Containing Boron Active Belite Cement

Open Access
|Jul 2021

References

  1. Gonzalez, A., Parraguez, A., Corvalan, L., Correa, N., Castro, J., Stuckrath, C., & Gonzalez, M. (2020). Evaluation of Portland and Pozzolanic cement on the self-healing of mortars with calcium lactate and bacteria. Construction and Building Materials, 257, 119558.
  2. Aydın, A. C., Nasl, V. J., & Kotan, T. (2018). The synergic influence of nano-silica and carbon nano tube on self-compacting concrete. Journal of Building Engineering, 20, 467–475.
  3. Türkmen, İ., A. Öz, & A.C. Aydın, (2010). Characteristics of workability, strength, and ultrasonic pulse velocity of SCC containing zeolite and slag. Scientific Research and Essays, 5(15), 2055–2064.
  4. Mahmood, W., Mohammed, A., & Ghafor, K. (2019). Viscosity, yield stress and compressive strength of cement-based grout modified with polymers. Results in materials, 4, 100043.
  5. Mohammed, A., Rafiq, S., Mahmood, W., Noaman, R., Ghafor, K., Qadir, W., & Kadhum, Q. (2020). Characterization and modeling the flow behavior and compression strength of the cement paste modified with silica nano-size at different temperature conditions. Construction and Building Materials, 257, 119590.
  6. Qadir, W., Ghafor, K., & Mohammed, A. (2019). Characterizing and modeling the mechanical properties of the cement mortar modified with fly ash for various water-to-cement ratios and curing times. Advances in Civil Engineering.
  7. Sarwar, W., Ghafor, K., & Mohammed, A. (2019). Modeling the rheological properties with shear stress limit and compressive strength of ordinary Portland cement modified with polymers. Journal of Building Pathology and Rehabilitation, 4(1), 1–12.
  8. Abdalla, L. B., Ghafor, K., & Mohammed, A. (2019). Testing and modeling the young age compressive strength for high workability concrete modified with PCE polymers. Results in Materials, 1, 100004.
  9. Aydın, A. C., Öz, A., Polat, R., & Mindivan, H. (2015). Effects of the different atmospheric steam curing processes on the properties of self-compacting-concrete containing microsilica. Sadhana, 40(4), 1361–1371.
  10. Kurt, M., Kotan, T., Gül, M. S., Gül, R., & Aydın, A. C. (2016). The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete. Sadhana, 41(2), 253–264.
  11. Oğuz, E., & Aydın, A. C. (2003). Prediction of adsorption rate of phosphate removal from wastewater with gas concrete. International journal of environment and pollution, 19(6), 603–614.
  12. Al-Martini, S., & Nehdi, M. (2007). Effect of chemical admixtures on rheology of cement paste at high temperature. Journal of ASTM international, 4(3), 1–17.
  13. Berriel, S. S., Ruiz, Y., Sánchez, I. R., Martirena, J. F., Rosa, E., & Habert, G. (2018). Introducing Low Carbon Cement in Cuba-A Life Cycle Sustainability Assessment Study. In Calcined Clays for Sustainable Concrete, 415-421.
  14. Gökçe, H. S. (2019). High temperature resistance of boron active belite cement mortars containing fly ash. Journal of Cleaner Production, 211, 992–1000.
  15. Kunt, K., Dur, F., Ertınmaz, B., Yıldırım, M., Derun, E. M., & Pişkin, S. (2015). Utilization of boron waste as an additive for cement production. CBU J Sci, 11(3), 383–389.
  16. Saglık, A., Sumer, O., Tunc, E., Kocabeyler, M. F., & Celik, R. S. (2008, May). The characteristics of Boron modified active belite cement and its utilization in mass and conventional concrete. In Proceedings of the 11th International Conference on Durability of Building Materials and Components, Istanbul, Turkey, 585–594.
  17. Yeşilmen, S., & Gürbüz, A. (2012). Evaluation of boron ore in cement production. Materials and Manufacturing Processes, 27(11), 1245–1250.
  18. Bullerjahn, F., Zajac, M., Skocek, J., & Haha, M. B. (2019). The role of boron during the early hydration of belite ye’elimite ferrite cements. Construction and Building Materials, 215, 252-263.
  19. Celik, A., Yilmaz, K., Canpolat, O., Al-Mashhadani, M. M., Aygörmez, Y., & Uysal, M. (2018). High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Construction and Building Materials, 187, 1190–1203.
  20. Hasar, U. C., Simsek, O., & Aydın, A. C. (2010). Application of varying frequency amplitude only technique for electrical characterization of hardened cement based materials. Microwave and Optical Technology Letters, 52(4), 801–805.
  21. Aydın, A. C., Aras, Ü. G. H., Kotan, T., & Öz, A. (2018). Effect of boron active belite cement on the compressive strength of concrete exposed to high temperatures. Journal of Civil, Construction and Environmental Engineering, 3(3), 47.
  22. Güyagüler, T. (2001). The Boron Potential of Turkey. In 4th Industrial Minerals Symposium, 118–19.
  23. Smith, R. and R. McBroom, (1992). Boron compounds. Kirk Othmer Encyclopedia of Chemical Technology, 4th ed., John Wiley & Sons, 365.
  24. Ozturk, M., Sevim, U. K., Akgol, O., Unal, E., & Karaaslan, M. (2020). Investigation of the mechanic, electromagnetic characteristics and shielding effectiveness of concrete with boron ores and boron containing wastes. Construction and Building Materials, 252, 119058.
  25. Kaman, D. Ö., Köroğlu, L., Ayas, E., & Güney, Y. (2017). The effect of heat-treated boron derivative waste at 600° C on the mechanical and microstructural properties of cement mortar. Construction and Building Materials, 154, 743–751.
  26. Hewlett, P., & Liska, M. (Eds.). (2019). Lea’s chemistry of cement and concrete. Butterworth-Heinemann.
  27. Liu, Y. J., & Zheng, Y. C. (2013). Active belite cement clinker produced with mineral waste. In Advanced Materials Research, 610, 2378–2385.
  28. Afshoon, I., & Sharifi, Y. (2020). Utilization of micro copper slag in SCC subjected to high temperature. Journal of Building Engineering, 29, 101128.
  29. Aydın, A. C., & Bayrak, B. (2019). The torsional behavior of reinforced self-compacting concrete beams. Advances in concrete construction, 8(3), 187–198.
  30. Okamura, H., Ozawa, K., & Ouchi, M. (2000). Self-compacting concrete. Structural concrete, 1(1), 3–17.
  31. Raisi, E. M., Amiri, J. V., & Davoodi, M. R. (2018). Mechanical performance of self-compacting concrete incorporating rice husk ash. Construction and Building Materials, 177, 148–157.
  32. Aydın, A. C., Alcan, H. G., Bayrak, B., Kılıç, M., & Maali, M. (2020). The mechanical behavior of thermally enhanced polypropylene concrete. Construction and Building Materials, 262, 120578.
  33. Khodair, Y., & Raza, M. (2017). Sustainable self-consolidating concrete using recycled asphalt pavement and high volume of supplementary cementitious materials. Construction and building materials, 131, 245-253.
  34. Aydın, A. C., Karakoccedil, M. B., Duuml, O. A., & Bayraktutan, M. S. (2010). Effect of low quality aggregates on the mechanical properties of lightweight concrete. Scientific Research and Essays, 5(10), 1133–1140.
  35. Memon, M. A., Memon, N. A., & Memon, B. A. (2020). Effect of Fly Ash and Un-crushed Coarse Aggregates on Characteristics of SCC. Civil Engineering Journal, 6(4), 693–701.
  36. Kurt, M., Aydın, A. C., Gül, M. S., Gül, R., & Kotan, T. (2015). The effect of fly ash to self-compactability of pumice aggregate lightweight concrete. Sadhana, 40(4), 1343–1359.
  37. EN, T., 197-1 (2012). Cement–Part 1: Composition, specifications and conformity criteria for common cements. Ankara: Turkish Standard Institution.
  38. Haecker, C. J., Garboczi, E. J., Bullard, J. W., Bohn, R. B., Sun, Z., Shah, S. P., & Voigt, T. (2005). Modeling the linear elastic properties of Portland cement paste. Cement and Concrete Research, 35(10), 1948–1960.
  39. Zohdi, T. I., Monteiro, P. J. M., & Lamour, V. (2002). Extraction of elastic moduli from granular compacts. International journal of fracture, 115(3), 49–54.
  40. Kotsay, G., & Jaskulski, R. (2019). Belite cement as an ecological alternative to Portland cement–a review, Materials Structures Technology, 2(1), 70–76.
  41. El-Didamony, H., Heikal, M., El-Sokkary, T. M., KhaliL, K., & Ahmed, I. A. (2014). Active belite–C2S and the hydration of calcium sulfoaluminates prepared from nano-materials. Ceramics–Silikáty, 58(2), 165–171.
  42. TS EN 932, (2009). Aggregates for concrete. TSE, Ankara, Turkey.
  43. TS802, (2016). Design of concrete mixes. TSE, Ankara, Turkey.
  44. Standard, A., C192/C192M. (2007). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken PA.
  45. EN, B., 12390-3, (2002). Testing hardened concrete-Part 3: Compressive strength of test specimens. British Standards Institution.
  46. Standard, A., C597-09 (2003). Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA.
  47. EN, B.S., 12390-5, (2009). Testing hardened concrete–Part 5: flexural strength of test specimens. British Standards Institution-BSI and CEN European Committee for Standardization.
  48. EFNARC, S., (2002). Guidelines for self-compacting concrete. EFNARC Publication, London, UK, 1–32.
  49. Davraz, M. E. T. İ. N., Pehlivanoğlu, H. E., & Kilinçarslan, Ş. (2017). Influence of High Temperature on Concrete Produced from Portland Cement with Boron Additives. Acta Physica Polonica A, 132(3), 872–874.
  50. Liu, Y. J., & Zheng, Y. C. (2013). Mineral Waste Coupled with Boron Oxide for Producing Active Belite Cement Clinker. In Applied Mechanics and Materials, 405, 2564–2575.
  51. Aygörmez, Y., Al-mashhadani, M. M., & Canpolat, O. (2020). High-temperature effects on white cement-based slurry infiltrated fiber concrete with metakaolin and fly ash additive. Revista de la construcción, 19(2), 324–333.
  52. Tang, J., Li, P., Chen, X., & Bai, Y. (2020). Experimental study of strength, pore structure and phase evolution characteristics of iron tailings cemented paste backfill under high-temperature. Cement Wapno Beton, 25(2), 78–94.
  53. Cao, M., Li, L., Yin, H., & Ming, X. (2019). Microstructure and strength of calcium carbonate (CaCO 3) whisker reinforced cement paste after exposed to high temperatures. Fire Technology, 55(6), 1983–2003.
  54. Abid, M., Hou, X., Zheng, W., & Hussain, R. R. (2017). High temperature and residual properties of reactive powder concrete–A review. Construction and Building Materials, 147, 339–351.
  55. Öz, A., Bayrak, B., & Aydın, A. C. (2021). The effect of trio-fiber reinforcement on the properties of self-compacting fly ash concrete. Construction and Building Materials, 274, 121825.
  56. Akyuncu, V., Uysal, M., Tanyildizi, H., & Sumer, M. (2019). Modeling the weight and length changes of the concrete exposed to sulfate using artificial neural network. Journal of Construction, 17(3), 337–353.
DOI: https://doi.org/10.21307/acee-2021-016 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 67 - 78
Submitted on: Sep 29, 2020
|
Accepted on: Feb 25, 2021
|
Published on: Jul 5, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Abdulkadir Cüneyt AYDIN, Ali ÖZ, Neslihan GÖK, Barış BAYRAK, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.