References
- Griffith, A. A. (1920). The phenomena of rupture and flow in solids. Philosophical Transactions, Series A, 222, 163–198.
- Irwin, G. R. (1948). Fracture Dynamics. Fracturing of Metals, 147–166.
- Kurumatani, M., Terada, K., Kato, J., Kyoya, T., Kashiyama, K. (2016). An isotropic damage model based on fracture mechanics for concrete. Engineering Fracture Mechanics 155, 49–66.
- Wang, J., Tao, M., Nie, X. (2017). Fracture energy-based model for average crack spacing of reinforced concrete considering size effect and concrete strength variation. Construction and Building Materials, Volume 148, 398–410.
- Xu, W., Waas, A. M. (2016). Modeling damage growth using the crack band model; effect of different strain measures. Engineering Fracture Mechanics 152, 126–138.
- Xue, J., Kirane, K. (2019). Strength size effect and post-peak softening in textile composites analyzed by cohesive zone and crack band models. Engineering Fracture Mechanics 212, 106–122.
- Zhao, L., Yan, T., Bai, X., Li, T., Cheng, J. (2013). Implementation of Fictitious Crack Model Using Contact Finite Element Method for the Crack Propagation in Concrete under Cyclic Load. Mathematical Problems in Engineering, vol. 2013, ID 726317.
- Hilleborg, A., Modeer, M., Petersson, P. E. (1976). Analysis of Crack Formation and Crack Growth in Concrete by Means of Fract. Mech. and Finite Elements. Cement and ConcreteResearch, 6(6), 773–791.
- Słowik, M., Stroeven, P., Akram, A. (2020). Crack mechanisms in concrete – from micro to macro scale. Budownictwo i Architektura, 19(4), 53–66.
- Bažant, Z.P., Oh, B.H. (1983). Crack band theory for fracture of concrete. Matériaux et Construction, 16, 155–177.
- Bažant, Z.P. (editor) (1992). Fracture Mechanics of Concrete Structures. Elsevier Applied Science, London and New York, FraMCoS1.
- Golewski, G. L. (2007). Analysis influence of Dmax on fracture mechanics parameters of concrete made of limestone aggregate at three point bending. Budownictwo i Architektura, 1, 5–16.
- Mihashi, H., Nomura, N., Niiseki, S. (1991). Influence of aggregate size on fracture process zone of concrete detected with three dimensional acoustic emission technique. Cement and Concrete Research, 21(5), 737–744.
- Woliński, S., Hordijk, D. A., Reinhardt, H. W., Cornelissen, H. A.W. (1987). Influence of aggregate size on fracture mechanics parameters of concrete. International Journal of Cement Composites and Lightweight Concrete, 9(2), 95–103.
- Woliński, S. (1991). Tensile behaviour of concrete and their applications in nonlinear fracture mechanics of concrete. Scientific Works of Rzeszow University of Technology, 15.
- Słowik, M., Błazik-Borowa, E. (2011). Numerical study of fracture process zone width in concrete members. Architecture Civil Engineering Environment, 4(2), 73–78.
- Wang, X., Saifullah, H.A., Nishikawa, H., Nakarai, K. (2020). Effect of water-cement ratio, aggregate type, and curing temperature on the fracture energy of concrete. Construction and Building Materials, 259, 119646.
- Bažant, Z.P., Pfeiffer, P. A. (1987). Determination of Fracture Energy from Size Effect and Brittleness Number. ACI Materials Journal, 84(6), 463–480.
- Bažant, Z. P. (2001). Concrete fracture models: Testing and practice. Engineering Fracture Mechanics, 69(2), 165–205.
- Jenq, Y., Shah, S. P. (1985). Two parameter fracture model for concrete. Journal of Engineering Mechanics, 111(10), 1227–1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227).
- Ince, R., Alyamaç, K. E. (2008). Determination of fracture parameters of concrete based on water-cement ratio. Indian Journal of Engineering & Materials Sciences, 15, 14–22.
- Karamloo, M., Mazloom, M., Payganeh, G. (2016). Influences of water to cement ratio on brittleness and fracture parameters of self-compacting lightweight concrete. Engineering Fracture Mechanics, 168, part A, 227–241.
- Bharatkumar, B. H., Raghuprasad, B. K., Ramachandramurthy, D. S., Narayanan, R., Gopalakrishnan, S. (2005). Effect of fly ash and slag on the fracture characteristics of high performance concrete. Materials and Structures volume, 38, 63–72.
- Sundara, K.T., Iyengar, R., Raviraj, S., VenkateswaraGupta, A. (1995). Graphical method to determine the parameters of the two-parameter fracture model for concrete. Engineering Fracture Mechanics, 51(5), 851–859.
- Jansen, D. C., Weiss, W. J., Schleuchardt, S. H. F. (2000). Modified Testing Procedure for the Two Parameter Fracture Model for Concrete. The Proceedings of the 14th Engineering Mechanics Conference (EM2000): Austin, TX.
- Carpinteri, A., Berto, F., Fortese, G., Ronchei, C., Scorza, D., Vantadori, S. (2017). Modified two-parameter fracture model for bone. Engineering Fracture Mechanics, 174, 44–53.
- Carpinteri, A., Fortese, G., Ronchei, C., Scorza, D., Vantadori, S. (2017). Mode I fracture toughness of fibre reinforced concrete. Theoretical and Applied Fracture Mechanics, 91, 66–75.
- Xu, Sh., Reinhardt, H. W. (1999). Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part I: Experimental investigation of crack propagation. International Journal of Fracture, 98, 111–149.
- Neimitz, A. (1998). Fracture Mechanics. PWN, Warszawa.
- Xu, S., Reinhardt, H. W. (1999). Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams. International Journal of Fracture, 98, 151–177.
- Xu, S., Reinhardt, H. W. (1999). Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part III: Compact tension specimens and wedge splitting specimens. International Journal of Fracture, 98, 179–193.
- Wang, B., Dai, J.G., Zhang, X.F., Xu, S.L. (2010). Experimental study on the double-k fracture parameters and brittleness of concrete with different strengths. Fracture Mechanics of Concrete and Concrete Structures – Assessment, Durability, Monitoring and Retrofitting of Concrete Structures -B. H. Oh, et al. (eds), Korea Concrete Institute, 703–708.
- Kumar, S., Pandey, S. R., Srivastava, A.K.L. (2014). Determination of double-K fracture parameters of concrete using peak load method. Engineering Fracture Mechanics, 131, 471–484.
- Kumar, S., Pandey, S. R., Srivastava, A.K.L. (2013). Analytical methods for determination of double-K fracture parameters of concrete. Advances in Concrete Construction, 1(4), 319–340. DOI: http://dx.doi.org/10.12989/acc2013.1.4.319
- Qing, L. B., Nie, Y. T., Wang, J., Hu, Y. (2017). A simplified extreme method for determining double-K fracture parameters of concrete using experimental peak load. Fatigue & Fracture of Engineering Materials & Structures 40(2), 254–266.
- Qing, L. B., Nie, Y. T. (2020). The relationship between double-K parameters of concrete based on fracture extreme theory. Journal of Theoretical and Applied Mechanics, 58(1), 59–71.
- Kumar, S., Barai, S.V. (2012). Size-effect of fracture parameters for crack propagation in concrete: a comparative study. Computers and Concrete, 9(1), 1–19.
- Walraven, J.C. (2007). Fracture mechanics of concrete and its role in explaining structural behaviour. Fracture Mechanics of Concrete and Concrete Structures (FRAMCOS 6), 1265–1275.
- Tang, T., Ouyang, C., Libardi, W., Shah, S.P. (1995). Determination of K Ics and CTOD c from peak loads and relationship between two-parameter fracture model and size effect model. Fracture Mechanics of Concrete Structures, 3 (Edited by F.H. Wittmann), 135–144.
- Bhowmik, S., Ray, S. (2019). An experimental approach for characterization of fracture process zone in concrete. Engineering Fracture Mechanics, 211, 401–419.
- Bažant, Z.P., Kazemi, M.T. (1991). Size dependence of concrete fracture energy determined by RILEM work-of-fracture method. Int. J.Fract., 51, 121–138.
- Bažant, Z.P., Pfeiffer, P. A. (1987). Determination of Fracture Energy from Size Effect and Brittleness Number. ACI Materials Journal, 84(6), 463–480.
- Hoover, C.G., Bažant, Z.P. (2014). Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests. Int J Fract 187, 133–143. https://doi.org/10.1007/s10704-013-9926-0
- Carpinteri, A. (1992). Applications of Fracture Mechanics to Reinforced Concrete. CRC Press.
- Cifuentes, H., Alcalde, M., Medina, F. (2013). Comparison of the Size-Independent Fracture Energy of Concrete obtained by Two Test Methods. In van Mier et al. (Eds). Proceedings of 8th International Conference on Fractur Mechanics of Concrete and ConcreteStructures (FraMCoS-8), 1–8.
- Gustafsson, P. J., Hillerborg, A. (1988). Sensitivity in Shear Strength of Longitudinally Reinforced Concrete Beams to Fracture Energy of Concrete. Structural Journal, 85(3), 286–294.
- Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. ASME Journal of Applied Mechanics, 18, 293–297.
- Duan, K., Hu, X. Z., Wittmann, F. H. (2006). Scaling of quasi-brittle fracture: Boundary and size effect. Mech. Mater., 38, 128–141.
- Hu, X. Z. (2002). An asymptotic approach to size effect on fracture toughness and fracture energy of composites. Engineering Fracture Mechanics, 69(5), 555–564.
- Hoover, C. G., Bažant, Z. P. (2014). Universal Size-Shape Effect Law Based on Comprehensive Concrete Fracture Tests. Journal of Engineering Mechanics, 140(3), 473–479.
- Carpinteri, A., Chiaia, B., Ferro, G. (1995). Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder. Materials and Structures, 28, 311–317.
- Carpinteri, A., Chiaia, B. (1997). Multifractal scaling laws in the breaking behaviour of disordered materials. Chaos, Solitons & Fractals, 8(2), 135–150.
- Duan, K., Hu, X., Wittmann, F.H. (2003). Boundary effect on concrete fracture and non-constant fracture energy distribution. Engineering Fracture Mechanics, 70(16), 2257–2268.
- Duan, K., Hu, X. (2004). Asymptotic analysis of boundary effect on strength of concrete. Conference: FraMCos-5, vol. 1.