Have a personal or library account? Click to login
Energy Efficiency – Ecological and Economic Profitability Cover

Energy Efficiency – Ecological and Economic Profitability

Open Access
|Jan 2021

References

  1. Regulation of the Minister of Energy of October 5, 2017 on the detailed scope and method of preparing an energy efficiency audit and methods of calculating energy savings (Dz. U. 2017. 1912)
  2. The Act of May 20, 2016 on energy efficiency (Dz. U.2016. 831)
  3. Announcement of the Minister of Energy of November 23, 2016 on the detailed list of projects aimed at improving the efficiency of energy (Dz. U.2016. 1184)
  4. Reference Document on Best Available Techniques in the Cement and Lime Industry and Magnesium Oxide production (European Commission, May 2010)
  5. Decision of the European Commission of 26/03/2013 on the best available techniques (BAT) in the production of cement establishing the conclusions on the best available techniques (BAT) in accordance with Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions, with regard to production of cement, lime and magnesium oxide (notified under document number C (2013) 1728)
  6. Duda J., Wasilewski M. (2012). The impact of modernization of cyclone heat exchangers on energy consumption, Instytut Ceramikii Materiałów Budow-lanych, 11.
  7. Chmiel B., Grzegorczyk W.; Produkcja Cementu, Materiały Dydaktyczne Zakładu Technologii Chemicznej UMCS www.ztch.umcs.lublin.pl/materialy/prod_cem_bch.pdf
  8. www.ure.gov.pl
  9. Energy Information Administration: International Energy Statistics; 2012, www.eia.gov.
  10. The European Wind Energy Association (EWEA), (2012). Wind in Power: 2011 European Statistics. February; www.ewea.org.
  11. Bando M. (2018). Letter to the Minister of Energy Krzysztof Tchórzewski No. DEK-0730- 1 (1) /2018 /GK, Warszawa 31 stycznia.
  12. Gillingham K., Tsvetanov T. (2018). Nudging energy efficiency audits: Evidence from a field experiment. Journal of Environmental Economics and Management, 90, 303–316.
  13. Gładyś, H. (2017). System zarządzania energią w przedsiębiorstwach i innych organizacjach na podstawie normy PN-EN ISO 5001. Energetyka, 5(755), 326.
  14. Irrek, W., Thomas, R. (2008). Defining Energy Efficiency. Wuppertal: Wuppertal Institut fur Klima, Umwelt, Energie, 1, 1.
  15. Kluczek, A., Olszewski P. (2017). Energy audits in industrial processes. Journal of Cleaner Production, 142(4), 20, 3437–3453.
  16. Kudełko, M., Suwała, W., Kamiński, J., Kaszyński P. (2013). Instrumenty ekonomiczne jako środek wdrażania koncepcji zrównoważonej gospodarki na rynku energii (Economic instruments as a means of implementing the concept of sustainable economy in the energy market). Rynek Energii, 4, 90–96.
  17. Schleich, J., Fleiter T. (2017). Effectiveness of energy audits in small business organizations, Resource and Energy Economics. In press, corrected proof. [Online] https://www.sciencedirect.com/science/article/pii/S0928765516302846 [Dostęp: 2.09.2017].
  18. Generowicz N. (2020). Analysis of emission of pollutants from selected heat sources for a single-family building, Przemysł Chemiczny, 99/9,1309–1311.
  19. Generowicz N. (2020). Overwiew of selected natural gas drying methods, Architecture Civil Engineering Environment, 13(3), 73–83.
  20. Balcerzak W., Generowicz A., Mucha Z. (2014). Application of a multi-criteria analysis for selection of a method of reclamation method of a hazardous waste landfill, Polish Journal of Environmental Studies, 23, 3, 983–987.
  21. Generowicz A. Kowalski Z., Banach M., Makara A. (2012). A glance the World, Waste Management 32(2), 349–350.
  22. Ciuła J., Gaska K., Generowicz A., Hajduga G., Energy from landfill gas as an example of circular economy, E3S Web of Conferences, Vol. 30, The First Conference of the International Water Association IWA for Young Scientist in Poland “Water, Wastewater and Energy in Smart Cities”, Cracow, Poland, 2018, doi. 10.1051/e3sconf/20183003002,
  23. Gaska K., Generowicz A., Zimoch I., Ciuła J., Siedlarz D. (2018). A GIS based graph oriented algorithmic model for poly-optimization of waste management system, Architecture Civil Engineering Environment, 11(4), 151–159.
  24. Generowicz A., Gaska K., Hajduga G., Multi-criteria Analysis of the Waste Management System in a Metropolitan Area, E3S Web of Conferences 44, 00043, EKODOK2018, 16-18.04.2018, 10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering, ISSN 2267-1242, DOI: 10.1051/e3sconf/20184400043
  25. Olejnik T.P. (2012) Analysis of the breakage rate function for selected process parameters in quartzite milling, Chemical and Process Engineering, 33(1), 117–129,
  26. Olejnik T.P. (2010). Kinetics of grinding ceramic bulk considering grinding media contact points, Physicochemical Problems of Mineral Processing, 44, 187–194.
  27. Gubanova E., Kupinets L., Deforzh H., Koval V., Gaska K. (2019). Recycling of polymer waste in the context of developing circular economy, Architecture Civil Engineering Environment, 12(4), 99–108. DOI: 10.21307/ACEE-2019-055
  28. Koval V., Mikhno I., Hajduga G., Gaska K., Economic efficiency of biogas generation from food product waste. E3S Web of Conferences 2019, 100, 00039. DOI: 10.1051/e3sconf/201910000039
  29. Gaska, K.; Generowicz, A. SMART Computational Solutions for the Optimization of Selected Technology Processes as an Innovation and Progress in Improving Energy Efficiency of Smart Cities – A Case Study. Energies 2020, 13, 3338.
DOI: https://doi.org/10.21307/acee-2020-032 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 85 - 92
Submitted on: Nov 5, 2020
Accepted on: Nov 14, 2020
Published on: Jan 27, 2021
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Barbara HAWRYLAK, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.