Have a personal or library account? Click to login
Recovery of Tantalum from Different Resources Cover
Open Access
|Jan 2021

References

  1. Nassar, N. (2017). Shifts and trends in the global anthropogenic stocks and flows of tantalum. Resources, Conservation & Recycling, 125, 233–250.
  2. Mancheri, N., Sprecher, B., Deetman, S., Young, S., Bleischwitz, R., Dong, L., Kleijn, R., & Tukker, A. (2018). Resilience in the tantalum supply chain. Resources, Conservation & Recycling, 129, 56–69.
  3. Filella, M. (2017). Tantalum in the environment. Earth-Science Reviews, 173, 122–140.
  4. Chancerel, P., Marwede, M., Nilssen, N., & Lang, K.D. (2015). Estimating the quantities of critical metals embedded in ICT and consumer equipment. Resources, Conservation and Recycling, 98, 92–9.
  5. Cuesta-Lopez, S., Barros, R., Ulla-Maija, M., Willersinn, S., & Sheng, Y. (2016). Mapping the secondary resources in the EU (mine tailings, industrial waste). MSP-REFRAM.
  6. Gubanova, E., Kupinets, L., Deforzh, H., Koval, V., & Gaska, K. (2019). Recycling of polymer waste in the context of developing circular economy. Architecture Civil Engineering Environment, 12(4), 99–108, DOI: 10.21307/ACEE-2019-055.
  7. Koval, V., Mikhno, I., Hajduga, G., & Gaska, K. (2019). Economic efficiency of biogas generation from food product waste. E3S Web of Conferences 2019, 100, 00039. DOI: 10.1051/e3sconf/201910000039.
  8. Zima, W., Nowak-Oclon, M., & Oclon, P. (2018). Novel online simulation-ready models of conjugate heat transfer in combustion chamber waterwall tubes of supercritical power boilers. Energy, 148, 809–823. DOI: 10.1016/j.energy.2018.01.178.
  9. Blengini, G.A., Mathieux, F., Mancini, L., Nyberg, M., & Viegas, H.M. (2019). Recovery of critical and other raw materials from mining waste and landfills. European Commission, JRC Science for Policy Report.
  10. Garbarino, E., Orveillon, G., Saveyn, H., Barthe, P., & Ede, P. (2018). Best Available Techniques (BAT) Reference Document for the Management of Waste from Extractive Industries. European Commission, JRC Science for Policy Report.
  11. Kowalski, D., Kowalska, B., Bławucki, T., Suchorab, P., & Gaska, K. (2019). Impact Assessment of Distribution Network Layout on the Reliability of Water Delivery. Water, 11, 480. DOI: 10.3390/w11030480.
  12. Melcher, F., Graupner, T., & Oberthür, T. (2017). Tantalum-(niobium-tin) mineralisation in pegmatites and rare-metal granites of Africa. South African Journal of Geology, 120(1), 77–100.
  13. https://passive-components.eu/5g-handset-and-automotive-electronics-demand-raises-passive-component-revenues/ (access: 10.11.2020).
  14. Linnen, R., Trueman, D.L., & Burt, R. (2014). Tantalum and niobium. In G. Gunn, (Editor). Critical Metals Handbook. John Wiley & Sons, Ltd, 361–384.
  15. Schütte, P., & Näher, U. (2020). Tantalum supply from artisanal and small-scale mining: A mineral economic evaluation of coltan production and trade dynamics in Africa’s Great Lakes region. Resources Policy, 101896.
  16. Ramon, H., Peeters, J., Sterkens, W., Duflou, J., Kellens, K., & Dewulf, W. (2020). Techno-economic potential of recycling Tantalum containing capacitors by automated selective dismantling. Procedia CIRP, 90, 421–425.
  17. Olejnik, T. P. (2012). Analysis of the breakage rate function for selected process parameters in quartzite milling, Chemical and Process Engineering, 33(1), 117–129.
  18. Niu, B., Chen, Z., & Xu, Z. (2020). Recycling waste tantalum capacitors to synthesize high value-added Ta2O5 and polyaniline-decorated Ta2O5 photocatalyst by an integrated chlorination-sintering-chemisorption process. Journal of Cleaner Production, 252, 117206, doi: https://doi.org/10.1016/j.jclepro.2019.06.037.
  19. Shikika, A., Sethurajan, M., Muvundja, F., Mugumaodeha, M.C., & Gaydardzhiev, St. (2020). A review on extractive metallurgy of tantalum and niobium. Hydrometallurgy, 198, 105496, doi: https://doi.org/10.1016/j.hydromet.2020.105496.
  20. Rana, A.S., Zubair, M., Danner, A., & Mehmood, M.Q. (2021). Revisiting tantalum based nanostructures for efficient harvesting of solar radiation in STPV systems. Nano Energy, 80, 105520, https://doi.org/10.1016/j.nanoen.2020.105520.
  21. Lee, J., Yoon, J., Lee., Ch., Park, J., & Park, I. (2019). Hydridation and oxidation behaviors of tantalum hydride during milling process. International Journal of Refractory Metals and Hard Materials, 79, 90–94, https://doi.org/10.1016/j.ijrmhm.2018.11.011.
  22. Micheau, C., Lejeune, M., Arrachart, G., Draye, M., Turgis, R., Michel, S., Legeai, S., & Rosting, S. (2019). Recovery of tantalum from synthetic sulfuric leach solutions by solvent extraction with phosphonate functionalized ionic liquids. Hydrometallurgy, 189, 105107, https://doi.org/10.1016/j.hydromet.2019.105107.
  23. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52017DC0490
  24. Llorens González, T., García Polonio, F., López Moro, F.J., Fernández Fernández, A., Sanz Contreras, J.L., & Moro Benito, M.C. (2017). Tintantalum-niobium mineralization in the Penouta deposit (NW Spain): Textural features and mineral chemistry to unravel the genesis and evolution of cassiterite and columbite group minerals in a peraluminous system. Ore Geology Reviews, 81, 79–95, https://doi.org/10.1016/j.oregeorev.2016.10.034.
  25. http://www.phytosudoe.eu/wp-content/uploads/2016/11/10_Strategic-Minerals_Penouta-Project_PhytoSUDOE-workshop-2017.pdf
  26. Pura, A., Sarbast, A.H., Hernan, A., Maite, G.V., Josep, O., Oriol, T., Francisco Javier, L.M., Bascompta, M., Llorens, T., Castro, D., & Polonio, F.G. (2020). Liberation Characteristics of Ta–Sn Ores from Penouta, NW Spain. Minerals, 10(6), 50. https://doi.org/10.3390/min10060509.
  27. López, F.A., Gracia-Diaz, I., Rodriguez Largo, O., Gracia Polonio, F., & Llorens T. (2018). Minerals, 8(1), 20. https://doi.org/10.3390/min8010020.
  28. Francisco, H., & Sudzki, A. (2019). Strategic Minerals Milling Modelling of High Pressure Grinding Rolls and Process Parameters Dependency (Thesis for the Doctor of Philosophy Degree at the Polytechnic University of Catalonia within the Doctoral Program of the Natural Resources and Environment). Spain, Manresa.
  29. https://eur-lex.europa.eu/legal-content/PL/TXT/HTML/?uri=CELEX:52020DC0474&from=EN
  30. Santillan-Saldivar, J., Cimprich, A., Shaikh, N., Laratte, B., Young, S.B., & Sonnemann, G. (2021). How recycling mitigates supply risks of critical raw materials: Extension of the geopolitical supply risk methodology applied to information and communication technologies in the European Union. Resources. Conservation and Recycling, 164, 105108, https://doi.org/10.1016/j.resconrec.2020.105108.
DOI: https://doi.org/10.21307/acee-2020-031 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 79 - 84
Submitted on: Nov 5, 2020
Accepted on: Nov 13, 2020
Published on: Jan 27, 2021
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Natalia GENEROWICZ, Joanna KULCZYCKA, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.