References
- Iwaniak A. Kubik T., Tymków P. (2006). Feature extraction in high-resolution raster images using neural networks. Reports on Geodesy. Warszawa, Poland, 77(5), 263–271.
- Lyalko V.I., Popov M.A., Podorvan V.N., Sahackij A.I. (2005) Metodika klassifikacii ploshadnyh obektov na mnogospektralnyh kosmicheskih izobrazheniyah na osnove posledovatelnogo sliyaniya informacii [Classification Technique Of Square Objects On Multispectral Space Images Based On A Serial Information Merger]. Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa – Current problems in remote sensing of the Earth from space, 1(2), 89–95 [in Russian].
- Kozoderov V. V. Egorov V. D. (2011). Raspoznavanie rastitelnosti po dannym giperspektralnogo aerozondirovaniya [Vegetation recognition according to the hyperspectral aerosensing data]. Issledovanie Zemli iz kosmosa – Earth from Space, 3, 40–48 [in Russian].
- Gurevich I.B., Zhuravlev Yu. I., Smetanin Yu. G. (1999) Postroenie algebr izobrazhenij na osnove deskriptivnogo podhoda [Building an algebra of images based on a descriptive approach]. Proceeding from Reports of the 9th Russian Conference “Mathematical Methods of Pattern Recognition”, 33–36 [in Russian].
- Tarshin V.A., Sotnikov A.M., Pashenko R.E. (2014). Metod operativnoj podgotovki etalonov na osnove fraktalnoj obrabotki izobrazhenij s vysokoj obektovoj nasyshennostyu [The image set preparation for training vision system] Tehnicheskoe zrenie – Technical vision, 1(5), 2–8 [in Russian].
- Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870. http://dx.doi.org/10.1080/01431160600746456.
- WorldView-4 Satellite Sensor. (n.d.). Retrieved December 02, 2019 from https://www.satimagingcorp.com/satellite-sensors/geoeye-2/.
- Malcev G.N., Kozinov I.A. (2016). Peredacha giperspektralnyh videodannyh distancionnogo zondirovaniya zemli po radiokanalam s ogranichennoj propusknoj sposobnostyu [Transfer of Hyperspectral Video Data of Earth Remote Sensing via Radio Channels of Limited Capacity]. Informacionnye kanaly i sredy – Information and Control Systems, 2, 74–83. [in Russian].
- Labutina I. A. (2004) Deshifrirovanie aerokosmicheskih snimkov [Interpretation of aerospace images]. Moscow: Aspect Press [in Russian].
- Mokadem, D., Amine, A., Elberrichi, Z., & Helbert, D. (2018). Detection of Urban Areas using Genetic Algorithms and Kohonen Maps on Multispectral images. International Journal of Organizational and Collective Intelligence, 8(1), 46–62. doi: 10.4018/ijoci.2018010104.
- Plaza, A., Martinez, P., Gualtieri, J. A., & Perez, R. (2002). Image and Signal Processing for Remote Sensing VII. doi: 10.1117/12.454162.
- Karlov D.V., Berezina S.I., Ryeznikov Yu. V., Korobeckij O.V. (2019). Vikoristannya polya fraktalnoyi rozmirnosti dlya vektorizaciyi ob’yektiv rozvidki [Age of the fractal dimension field for vectorization of intelligence objects]. Sistemi ozbroyennya i vijskova tehnika – Systems of Arms and Military Equipment, 3(59), 64–71. DOI: 10.30748/soivt.2019.59.08.
- Butenko, O.S., Berezina, S.I., Krasovskij, G.Ya. (2008). Kompleksnyj podhod k deshifrirovaniyu snimkov po dannym kosmicheskogo monitoringa [An integrated approach to decrypting images based on space monitoring data]. Ekologiya j resursi: zbirnik naukovih prac Institutu problem nacionalnoyi bezpeki – Ecology and resources: a collection of scientific papers of the Institute for National Security, 1, 23–41.
- Henrique dos Santos, P., Neves, S. M., Sant’Anna, D. O., Henrique de Oliveira, C., Carvalho, H. D. (2018). The analytic hierarchy process supporting decision making for sustainable development: an overview of applications. Journal of Cleaner Production, 212, 119–138. doi:10.1016/j.jclepro.2018.11.270.
- Butenko, O.S. (2010). Scenarij alternative razvitiya izmeneniya sostoyaniya anomalnyh ekologicheskih obektov pri kompleksnom vozdejstvii vozmushenij [The scenario of alternatives to the development of the state change of anomalous ecological objects under the complex influence of disturbances]. Otkrytye informacionnyei kompyuternye integrirovannye tehnologii – Open information and computer integrated technologies, 46, 225–237.
- Cheng, G, Han, J. (2016). A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11–28.
- Masuda, T. (1990). Hierarchical sensitivity analysis of priority used in analytic hierarchy process. International Journal of Systems Science, 21(2), 415–427. doi:10.1080/00207729008910371.
- Kachinskij, A. B. (2003). Bezpeka, zagrozi i rizik: naukov i koncepciyi ta matematichni metodi (Threats and risk: scientific concepts and mathematical methods). Kiev: Institute of problems National security [in Russian].
- Basarab, M. A., Volosyuk, V. K., Goryachkin, O. V., Zelenskij, A. A., Kravchenko, V. F., Ksendzuk, A. V. et al. (2007). Cifrovaya obrabotka signalovi izobrazhenij v radiofizicheskih prilozheniya [Digital signal and image processing in radiophysical applications]. Moscow: FIZMATLIT.
- Volosyuk, V.K., Kravchenko, V.F. (2008). Statisticheskaya teoriya radiotehnicheskih sistem distancionnogo zondirovaniya i radiolokacii [Statistical theory of radio systems for remote sensing and radar]. Moscow: FIZMATLIT.
- Saaty, T. L., & Vargas, L. G. (2012). The seven pillars of the analytic hierarchy process, models, methods, concepts & applications of the analytic hierarchy process. International Series in Operations Research & Management Science, 175, 23–40, Springer 978-1-4614-3596-9.
- Jalaliyoon, N., Bakar, N. A., Taherdoost, H. (2012). Accomplishment of Critical Success Factor in Organization; Using Analytic Hierarchy Process. International Journal of Academic Research in Management, Helvetic Editions Ltd, 1(1), 1–9.
- Sentinel-hub EO-Browser. (n.d.). Retrieved from November 13, 2019, https://apps.sentinel-hub.com/eo-browser/
- CSI SRTM – SRTM 90m DEM Digital Elevation Database. (n.d.). Retrieved November 22, 2019, from http://srtm.csi.cgiar.org/.