Figure 1.
![Estimated distribution of heat losses in the house according to data [4, 5, 6]](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64706f7083f1392090d6979d/j_acee-2019-036_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKFCW76C7N%2F20260126%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260126T025940Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEGkaDGV1LWNlbnRyYWwtMSJGMEQCIFSPnNbPKusZ7dTn9Va69LRR85%2FBx3afY6qmSWeIho1iAiAH2pNKmAFsPyVN5AMlP%2Fq21yqZxm6siQwqs4C06qfNmCq9BQgyEAIaDDk2MzEzNDI4OTk0MCIMUuBdyatHquOLPm73KpoFtsKZqoFoC3jb2Uz8e19DQWrq8YhWNKnixYar%2BUHw0e0LrUQ83JPX7zNxV6M%2FHScEe5iBF9meT8kwk%2BnyWYrYe2PfmXfT%2BtAdyTNwuot4vSqTitRfosbtOCcUTG%2FKq20YscGHctOxV6v0QpuilxnQwngmnrAe2Pr%2F%2FwYC61OtmMT4RtvNawV8VpzIHHujns29x4%2B3s120o8aLekdPdfOTPK%2Bqo8OHtW8Fc%2B5WZFuryUmj6ZWBBh10MBpfnVsXVw9EfhkVydaD72bNkFFU0II%2BC5luPCducmAUsSo%2BtN8EV3Nhxl47VPG1a4Hb3wf%2FMN0Ce7u7EWH2C2y2QN3olHqkJ8blYC%2FA5zFd7EiDkM8BAv8R1mLGX2Sgz9DZOBaw2FmQ3KDdWPX%2B4WR7yHg98Z0mnQP9%2BQeGnBnPjyBsM6BKGnxb37PHKhXJDyvpB2%2FmkSknoaamXVK4aksaegA5CvRtuC5dEdN0gncfq3yl0OTZbqlYx9KW0bX5DxB2RO7cOY1ldSeDClvHeImWPmmSfaPQvIBlM0iLon0pUvg0TjuqhwDXyBHO1enRs9i8qreJIx2x72Pp1lzwDMs%2Bns7%2FfYBpDE%2BjbcApC5f9YixK5zr8xJB%2B%2F9xImMbGxf0mtLnXPJBmVtxfpgETtT1lE1KVYOdeyxvqWwx04T6G%2BqRoTa1BqPHJ1OIPrOWx03RLrKbmRSORDWIxdwbxJic5KKRwh4UMV26lsKGtCgaMG05bQXoTqk%2BQMvCH7Ewlz45N%2FFnx85m6420y2GOtOHMTvQ6ZJD3ZTTcWDKO%2FyaPs3pwX9GKQbfYiV7U8CGQfu8s4BXFZeVSMQI7GPKu3VAGctZ5sUc1R0QMuKKQ0Zf6VuXu2twbZtqo4u9bQE%2B%2BLRQ3uMOv82ssGOrIBGsanr6VzQi27xnbERPwySBDaz8bNIsUiD78s5j4dam6X4wRwumImnFXf7vndUb%2FkzdzR4epat6UV9RuxfZrn6H%2BC0HATC%2FWvvyY32WNmT0J3BjgywvNSAOPyRGT3J1bQKSyL9ExKAjR%2FBaD2w9QyaxvC5wUmN2667Q1Bo8gZpJ5jBo3Hkl9%2Bhk6xT1pZQ3rditwtlN0sksQOl615%2F0i9XQdhEy8EJ7shripuMgUNh1s9yw%3D%3D&X-Amz-Signature=5d14ec68136c2ef78590f68b0c95d5c9a2419b1ea8d590e62b97ee76bc6f0eac&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2.

Figure 3.

Figure 4.

Figure 5.

Thermophysical and physical-mechanical characteristics of the wall layers (type “C”)
| Thermophysical and physical-mechanical characteristics of the wall layers | Constructive wall layer starting from the inside of the room | ||
| Inside lime – sandy plaster | Strawbale panel | Outside lime – sandy plaster | |
| The specific heat capacity of the material of the layer, ci (J/kg×K) [7, 21, 22] | 840 | 1675.00 | 840 |
| The thickness of the layer, δi (m) | 0.05 | 0.40 | 0.05 |
| Density of the layer ρi , (kg/m3) [21, 22, 24, 25] | 1600 | 120.00 | 1600 |
| The weight of 1m2 wall, kg | 80 | 47.40 | 80 |
| The thermal conductivity of the layer λi , (W/mK) [21, 22, 24, 25] | 0.81 | 0.07 | 0.81 |
| The coefficient of heat absorption of the i-th layer Si (W/m2K) [23] | 8.90 | 0.97 | 8.90 |
| The thermal resistance of the i-th layer, Ri (m2 K/W) | 0.062 | 6.08 | 0.062 |
| An indicator of the thermal inertia of the i-th layer Di by the formula (5) | 0.55 | 5.92 | 0.55 |
Eigen vector η max, consistency index CI, consistency ratio CR for matrix (Level II)
| Characteristit number of the vector, η max | 6.013 |
| Cotsistenct index, CI | 0.064 |
| Coneistency ratio, CR | 0.052 |
Thermophysical and physical-mechanical characteristics of the wall layers (type “B”)
| Thermophysical and physical-mechanical characteristics of the wall layers | Constructive wall layer starting from the inside of the room | ||
| Inside lime – sandy plaster | Adobe | Outside lime – sandy plaster | |
| The specific heat capacity of the material of the layer, ci (J/kg×K) [7, 21, 22] | 840 | 880 | 840 |
| The thickness of the layer, δi (m) | 0.05 | 0.4 | 0.05 |
| Density of the layer ρi , (kg/m3) [21, 22] | 1600 | 1400 | 1600 |
| The weight of 1m2 wall, kg | 80 | 560 | 80 |
| The thermal conductivity of the layer λi , (W/mK) [21, 22] | 0.81 | 0.4 | 0.81 |
| The coefficient of heat absorption of the i-th layer Si (W/m2K) [23] | 8.90 | 5.99 | 8.90 |
| The thermal resistance of the i-th layer, Ri (m2 K/W) | 0.062 | 1.000 | 0.062 |
| An indicator of the thermal inertia of the i-th layer Di by the formula (5) | 0.55 | 5.99 | 0.55 |
Thermophysical and physical-mechanical characteristics of the wall layers (type “A”)
| Thermophysical and physical-mechanical characteristics of the wall layers | Constructive wall layer starting from the inside of the room | ||
| Inside lime – sandy plaster | Hempcrete from flax | Outside lime – sandy plaster | |
| The specific heat capacity of the material of the layer, ci (J/kgK) [21, 22] | 840 | 2300 | 840 |
| The thickness of the layer, δi (m) | 0.02 | 0.45 | 0.03 |
| Density of the layer ρi , (kg/m3) [21, 22] | 1600 | 550 | 1600 |
| The weight of 1m2 wall, kg | 32 | 247.5 | 48 |
| The thermal conductivity of the layer λi , (W/mK) [21, 22] | 0.81 | 0.075 | 0.81 |
| The coefficient of heat absorption of the i-th layer, Si (W/m2K) [23] | 8.90 | 2.63 | 8.90 |
| The thermal resistance of the i-th layer, Ri (m2 K/W) | 0.025 | 6.000 | 0.037 |
| An indicator of thermal inertia of the of the i-th layer Di by the formula (5) | 0.22 | 15.76 | 0.33 |
Matrix of pairwise comparin for criteria (Level II of Fig_ 4)
| Comparison Criteria | The thermal inertia of the base layer τu ', hour by the formula (3) | Layering coefficient of multilayered wall Ln, by the formula (4) | The total thermal inertia of multilayered wall τu, hour by the formula (2) | Foundation pressure p, kg/m | The total R-value of multilayered wall, m2K/W | Wall thermal inertia indicator, ΣDi =Σ(SiRi ) | The vector of weights by the formula (7) | The normalized weight of the criterion |
| The thermal inertia of the base layer τu ', hour by the formula (3) | 1 | 1 | 1/6 | 1/2 | 1/5 | 1/6 | 0.375 | 0.049 |
| Layering coefficient of multilayered wall Ln, by the formula (4) | 1 | 1 | 1/5 | 1/ 2 | 1 / 4 | 1/5 | 0.114 | 0.0 54 |
| The total thermal inertia of multilayered wall τu, hour by the formula (2) | 6 | 5 | 1 | 3 | 1 | 1 | 2.117 | 0.270 |
| Foundation pressure p, kg/m | 2 | 2 | 1/3 | 1 | 1/3 | 1/3 | 0.727 | 0.094 |
| The total R-value of multilayered wall, m2K/W | 5 | 4 | 1 | 3 | 1 | 1 | 1.979 | 0.256 |
| Wall thermal inertia indicator, ΣDi =Σ(SiRi ) | 6 | 5 | 1 | 3 | = | 1 | 2.117 | 0.274 |
Criteria of energy efficiency potential of envelopes and target function
| A variant of the wall fence | Criteria for evaluation | The total value of the integral criterion for energy efficiency assessment | |||||
| The thermal inertia of the base layer τu ', hour by the formula (3) | Layering coefficient of multilayered wall Ln , by the formula (4) | The total thermal inertia of multilayered wall τu, hour by the formula (2) | Foundation pressure p, kg/m | The total Rvalue of multilayered wall, m2K/W | Wall thermal inertia indicator, D, ΣDi =Σ(SiRi ) | ||
| Wall “A” | 0.007 | 0.033 | 0.151 | 0.018 | 0.091 | 0.146 | 0.445 |
| Wall “B” | 0.007 | 0.006 | 0.027 | 0.006 | 0.016 | 0.029 | 0.091 |
| Wall “C” | 0.007 | 0.006 | 0.027 | 0.035 | 0.091 | 0.029 | 0.194 |
| Wall “D” | 0.008 | 0.003 | 0.014 | 0.004 | 0.009 | 0.016 | 0.053 |
| Wall “E” | 0.020 | 0.006 | 0.056 | 0.032 | 0.050 | 0.053 | 0.216 |
Thermophysical and physical-mechanical characteristics of the wall layers (type “E”)
| Thermophysical and physical-mechanical characteristics of the wall layers* | Constructive wall layer starting from the inside of the room | ||
| Inside lime – sandy plaster+ Chocks of wood | Insulation – chopped straw | Outside lime – sandy plaster+ Chocks of wood | |
| The specific heat capacity of the material of the layer, ci (J/kg×K) [22] | 2146.67 | 1675.00 | 2146.67 |
| The thickness of the layer, δi (m) | 0.10 | 0.30 | 0.10 |
| Density of the layer ρi , (kg/m3) [22] | 866.67 | 200.00 | 866.67 |
| The weight of 1m2 wall, kg | 86.67 | 60.00 | 86.67 |
| The thermal conductivity of the layer λi , (W/mK) [22, 24, 25] | 0.71 | 0.08 | 0.71 |
| The coefficient of heat absorption of the i-th layer Si (W/m2K) [23] | 9.80 | 1.35 | 9.80 |
| The thermal resistance of the i-th layer, Ri (m2 K/W) | 0.14 | 4.00 | 0.14 |
| An indicator of the thermal inertia of the i-th layer Di by the formula (5) | 1.38 | 5.41 | 1.38 |
Parameters of the considered multilayered envelopes
| Thermophysical and physical-mechanical parameters of the considered multilayered envelopes | Wall type | ||||
| Wall “A” | Wall “B” | Wall “C” | Wall “D” | Wall “E” | |
| Thermal inertia of the base layer τu ', hours by the formula (3) | 11.67 | 11.67 | 11.44 | 11.67 | 18.44 |
| Layering coefficient of multilayered wall, Ln by the formula (4) | 9.11 | 1.61 | 1.68 | 1.03 | 1.62 |
| The total thermal inertia of multilayered wall τu, hours by the formula (2) | 106.32 | 18.77 | 19.22 | 11.98 | 29.85 |
| The sum of thermal resistances of the wall materials R, (m2K/W) | 6.06 | 1.12 | 6.20 | 0.50 | 4.40 |
| Internal surface resistance Rsi (m2K/W) for horizontal heatflow [27] | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
| External surface resistance Rse (m2K/W) for horizontal heatflow [27] | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
| The total R-value of the multilayered wall, (m2K/W) | 6.23 | 1.29 | 6.37 | 0.67 | 4.57 |
| The total thermal transmittance of the multilayered wall U=1/R-value, (W/m2K) | 0.16 | 0.77 | 0.16 | 1.48 | 0.22 |
| An indicator of the thermal inertia of the wall, ΣDi =Σ(SiRi ) | 16.31 | 7.08 | 7.02 | 5.41 | 8.69 |
| Pressure on the foundation p, kg/m | 655.00 | 1440.00 | 418.99 | 1920.00 | 466.67 |
Thermophysical and physical-mechanical characteristics of the wall layers (type “D”)
| Thermophysical and physical-mechanical characteristics of the wall layers | Constructive wall layer starting from the inside of the room | ||
| Inside lime – sandy plaster | Strawbale panel | Outside lime – sandy plaster | |
| The specific heat capacity of the material of the layer, ci (J/kg×K) [7, 21, 22] | 840 | 1675.00 | 840 |
| The thickness of the layer, δi (m) | 0.05 | 0.40 | 0.05 |
| Density of the layer ρi , (kg/m3) [21, 22, 24, 25] | 1600 | 120.00 | 1600 |
| The weight of 1m2 wall, kg | 80 | 47.40 | 80 |
| The thermal conductivity of the layer λi , (W/mK) [21, 22, 24, 25] | 0.81 | 0.07 | 0.81 |
| The coefficient of heat absorption of the i-th layer Si (W/m2K) [23] | 8.90 | 0.97 | 8.90 |
| The thermal resistance of the i-th layer, Ri (m2 K/W) | 0.062 | 6.08 | 0.062 |
| An indicator of the thermal inertia of the i-th layer Di by the formula (5) | 0.55 | 5.92 | 0.55 |
Integral criteria for assessing the energy efficiency potential by authorship methodology
| Criteria for evaluation | A variant of the wall fence | ||||
| Wall “A” | Wall “B” | Wall “C” | Wall “D” | Wall “E” | |
| The thermal inertia of the base layer τ u ', hour by the formula (3) | 0.633 | 0.633 | 0.621 | 0.633 | 1.000 |
| Layering coefficient of multilayered wall Ln, by the formula (4) | 1.000 | 0.177 | 0.184 | 0.113 | 0.178 |
| The total thermal inertia of multilayered wall τ u , hour by the formula (2) | 1.000 | 0.177 | 0.181 | 0.113 | 0.281 |
| Foundation pressure p, kg/m | 0.341 | 0.750 | 0.218 | 1.000 | 0.243 |
| The total R-value of multilayered wall | 0.978 | 0.203 | 1.000 | 0.106 | 0.699 |
| Wall thermal inertia indicator D, ΣDi =Σ(SiRi ) | 1.000 | 0.434 | 0.431 | 0.331 | 0.501 |
| Returns to the normalized value of the criterion ci by the formula (12) | 2.931 | 1.333 | 4.582 | 1.000 | 4.114 |
| Influence of the negative foundation pressure parameter di by the formula (13) | 0.640 | 0.291 | 1.000 | 0.218 | 0.898 |
| Value of the integral criterion for assessing the energy efficiency potential of the i-th version of the envelope In,i , by the formula (14) | 0.335 | 0.122 | 0.218 | 0.097 | 0.227 |