References
- Gaska K., Generowicz A., Zimoch I., Ciula J., Iwanicka Z. (2017). A high-performance computing (HPC) based integrated multithreaded model predictive control (MPC) for water supply networks, Architecture Civil Engineering Environment, 10(4), 141–151.
- Gis W., Grzelak P., Żółtowski A. (2013). Czynniki rozwoju transportu miejskiego zasilanego biometanem (Development faktors of biometane fuels in urban traffic). Prace Naukowe Politechniki Warszawskiej, 98, 175–181.
- Ustawa o odnawialnych źródłach energii (Act on renewable energy sources), Dz. U. z 2015 r. poz. 478 (z póź. zm.).
- Ciuła J., Gaska K., Generowicz A., Hajduga G. (2018). Energy from Landfill Gas as an Example of Circular Economy, E3S Web Conf. 30 03002, DOI: 10.1051/e3sconf/20183003002.
- Persson M., Jönsson O., Wellinger A. (2006). Biogas Upgrading to Vehicle Fuel Standards and Grid Injection. IEA Bioenergy. Sweden.
- Cebula J. (2009). Biogas purification by sorption techniques. Architecture Civil Enineering Eenvironment, 2(2), 95–104.
- Smerkowska B. (2013). Wytwarzanie biometanu – aspekty technologiczne i ekonomiczne. VII Spotkanie Interesariuszy Sieci Projektu BIOMASTER. Kraków.
- Waśkiewicz J., Gis W., Menes E. (2015). Wstępna ocena ekonomiczna wykorzystania biometanu w miejskim transporcie autobusowym. Studium przypadku. (Initial economic assessment of the use of biomethane in urban bus transport. Case study). Transport samochodowy, 2, 11–21.
- Berent-Kowalska G., Kacprowska J., Moskal I., D. Piwko, Jurgaś A. (2017). Warszawa. Energia ze źródeł odnawialnych w 2016 roku (Renewable sources energy in 2016), Główny Urząd Statystyczny, 36–38.
- Sprawozdanie technologiczne z pracy oczyszczalni ścieków za 2017 rok. (2018). Materiały wewnętrzne Spółki Sądeckie Wodociągi. (Technological report on the operation of sewage treatment plant for 2017. Internal materials of the Company. Sądeckie Wodociągi).
- Śliwka M. (2013). Możliwości wykorzystania gazu składowiskowego jako paliwa pojazdów mechanicznych w Polsce (Possibilities of using landfill gas as a fuel for motor vehicles in Poland). Inżynieria Ekologiczna, 34, 222–228.
- Rasi, S., Läntelä, J., & Rintala, J. (2011). Trace compounds affecting biogas energy utilisation – A review. Energy Conversion and Management, 52(12), 3369–3375. DOI:10.1016/j.enconman.2011.07.005
- Pöschl, M., Ward, S., & Owende, Ph. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87(11), 3305–3321.
- Themelis N.J., Ulloa P.A.(2007). Methane generation in landfills. Renewable Energy, 32(7), 1243–1257.
- Karina R.S., & Electo E. S. Lora (2009). Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass and Bioenergy, 33(9), 1101–1107.
- Ozkaya B., Demir A., & Bilgili M. S. (2007). Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environmental Modelling & Software, 22(6), 815–822.
- Murphy J.D. & McKeogh, E. (2004). Technical, Economic and Environmental Analysis of Energy Production from Municipal Solid Waste. Renewable Energy, 29, 1043–1057.
- Budzianowski W. M. (2012). Sustainable biogas energy in Poland: Prospects and challenges. Renewable and Sustainable Energy Reviews, 16(1), 342–349.
- Dillah D. D. (2006). Heating Landfill Facilities Using Infrared Heaters. Retrieved from http://www.epa.gov/lmop/documents/pdfs/conf/9th/dillah_abs.pdf.
- Czop M., & Kajda-Szcześniak M. (2013). Evaluation of Basic Fuel Properties of Waste from Renovation and Construction Selected from Municipal Wastes. Rocznik Ochrona Środowiska, 15, 1426–1440.
- Gaska, K., Generowicz, A., Zimoch, I., Ciuła, J., Siedlarz, D. (2018). A GIS based graph oriented algorithmic model for poly-optimization of waste management system. Architecture Civil Engineering Environment, 11(4), 52–159, DOI: 10.21307/acee-2018-061.
- Patterson T., Esteves S., Dinsdale R.,& Guwy A. (2011). An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy, 39(3), 1806–1816.
- Sun Q., Li H., Yan J., Liu L., Yu Z., Yu X. (2015). Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilization. Renewable and Sustainable Energy Reviews, 51, 521–532.
- Deng L., Hägg M. (2010). Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. International Journal of Greenhouse Gas Control, 4(4), 638–646.
- Murphy J.D., McCarthy K. (2005). The optimal production of biogas for use as a transport fuel in Ireland. Renewable Energy, 30(14), 2111–2127.
- Fallade M., &Eklund M. (2015). Towards a sustainable socio-technical system of biogas for transport: the case of the city of Linköping in Sweden. Journal of Cleaner Production, 98(1), 17–28.
- Gaska K., & Generowicz A. (2017). Advanced computational methods in component-oriented modelling of municipal solid waste incineration processes, Architecture Civil Engineering Environment, 10(1), 117–130.
- Gaska K., & Pikoń K. (2007). Modelling of the Integrated Waste Management Systems using Object-Oriented Methodology. Proceedings of WSEAS International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate, WWAI ’07, Arcachon, France, October 14-16, 2007, WSEAS, (pp.174–183).