References
- Wilk P., Orlińska-Woźniak, P., & Gębala, J. (2017). Zmienność stosunku stężeń azotu i fosforu dla wybranych zlewni rzek przymorza – Variability of nitrogen to phosphorus concentraction ratio on the example of selected coastal river basins, Scientific Review 75, 55–65.
- Chen, F., Hou, L., Liu, M., Zheng, Y., Yin, G., Lin, X., … & Jiang, X. (2016). Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export. Journal of Geophysical Research: Biogeosciences, 121(2), 451–465.
- Smith, R. A., Alexander, R. B., & Schwarz, G. E. (2003). Natural background concentrations of nutrients in streams and rivers of the conterminous United States.
- Blaas, H., & Kroeze, C (2016). Excessive nitrogen and phosphorus in European rivers: 2000–2050. Ecological indicators, 67, 328–337.
- Tattari, S., Koskiaho, J., Kosunen, M., Lepistö, A., Linjama, J., & Puustinen, M. (2017). Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010 – can the efficiency of undertaken water protection measures seen? Environmental monitoring and assessment, 189(3), 95.
- Yoon, V. K., & Stein, E. D. (2008). Natural catchments as sources of background levels of storm-water metals, nutrients, and solids. Journal of Environmental Engineering, 134(12), 961–973.
- Van Beusekom, J. E. Eutrophication. (2018). In Handbook on Marine Environment Protection (pp. 429–445). Springer, Cham.
- Dodds, W. K., & Oakes, R. M. A. (2004). technique for establishing reference nutrient concentrations across watersheds affected by humans. Limnology and Oceanography: methods, 2(10), 333–341.
- Kronvang, B., Jeppesen, E., Conley, D. J., Søndergaard, M., Larsen, S. E., Ovesen, N. B., & Carstensen, J. (2005). Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. Journal of Hydrology, 304(1-4), 274–288.
- Kronvang, B., Windolf, J., Larsen, S. E., & Bøgestrand, J. (2015). Background concentrations and loadings of nitrogen in Danish surface waters. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 65(sup2), 155–163.
- Hofmann, J., Venohr, M., Behrendt, H., & Opitz, D. (2010). Integrated water resources management in central Asia: nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Science and Technology, 62(2), 353–363.
- Huttunen, I., Lehtonen, H., Huttunen, M., Piirainen, V., Korppoo, M., Veijalainen, N., … & Vehviläinen, B. (2015). Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea. Science of the Total Environment, 529, 168–18.
- Palmeri, L., Bendoricchio, G., & Artioli, Y. (2005). Modelling nutrient emissions from river systems and loads to the coastal zone: Po River case study, Italy. Ecological Modelling, 184(1), 37–53.
- Wilk, P. (2015). The method of calculating river absorption capacity (RAC) as a tool to assess the physicochemical state of surface flowing waters, PhD thesis, IMGW-PIB (in Polish).
- Venohr, M., Hirt, U., Hofmann, J., Opitz, D., Gericke, A., Wetzig, A., … & Mahnkopf, J. (2011). Modelling of nutrient emissions in river systems – MONERIS: methods and background. International Review of Hydrobiology, 96(5), 435–483.
- Ostojski, M. S., Gębala, J., Orlińska-Woźniak, P., & Wilk, P. (2016). Implementation of robust statistics in the calibration, verification and validation step of model evaluation to better reflect processes concerning total phosphorus load occurring in the catchment. Ecological modelling, 332, 83–93.
- Liu, M., & Lu, J. (2015). Predicting the impact of management practices on river water quality using SWAT in an agricultural watershed. Desalination and Water Treatment, 54(9), 2396–2409.
- Gałczyńska, M., Gamrat, R., & Pacewicz, K. (2011). Influence of Different Uses of the Environment on Chemical and Physical Features of Small Water Ponds. Polish Journal of Environmental Studies, 20(4).
- Santhi, C., Kannan, N., White, M., Di Luzio, M., Arnold, J. G., Wang, X., & Williams, J. R. (2014). An integrated modeling approach for estimating the water quality benefits of conservation practices at the river basin scale. Journal of environmental quality, 43(1), 177–198.
- Ostojski, M. S. (2012). Modelowanie procesów odprowadzania do Bałtyku związków biogennych: na przykładzie azotu i fosforu ogólnego, Wydawnictwo Naukowe PWN, Warszawa.
- Wilk, P., Orlińska-Woźniak, P., and Gębala, J. (2018). The river absorption capacity determination as a tool to evaluate state of surface water, Hydrol. Earth Syst. Sci., 22, 1033–1050.
- Helsinki Commission (2004). The forum Baltic Sea Pollution Load Compilation (PLC-4).
- Wilk, P., Orlińska-Woźniak, P., Gębala, J., & Ostojski, M. (2017). The flattening phenomenon in a seasonal variability analysis of the total nitrogen loads in river waters. Technical Transactions, 11, 137–159.
- Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology 524, 733–752.
- Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. JAWRA Journal of the American Water Resources Association, 37(5), 1169–1188.
- Blainski, É., Porras, E. A. A., Garbossa, L. H. P., & Pinheiro (2017). A. Simulation of land use scenarios in the Camboriú River Basin using the SWAT model. RBRH, 22.
- Can, T., Xiaoling, C., Jianzhong, L., Gassman, P. W., Sabine, S., & José-Miguel, S. P. (2015). Assessing impacts of different land use scenarios on water budget of Fuhe River, China using SWAT model. International Journal of Agricultural and Biological Engineering, 8(3), 95.
- Goyal, M. K., Panchariya, V. K., Sharma, A., & Singh, V. (2018). Comparative Assessment of SWAT Model Performance in two Distinct Catchments under Various DEM Scenarios of Varying Resolution, Sources and Resampling Methods. Water Resources Management, 1–21.
- CODGiG (2015) – Centralny Ośrodek Dokumentacji Geodezyjneji Kartograficznej – national databases (Centre of Geodesic and Cartographic Documentation), www.codgik.gov.pl (accessed: 6 June 2015)
- Angelstam, P. (1996). The ghost of forest past–natural disturbance regimes as a basis for reconstruction of biologically diverse forests in Europe. In Conservation of faunal diversity in forested landscapes. Springer, Dordrecht, 287–337.
- Hermy, M., Honnay, O., Firbank, L., Grashof-Bokdam, C., & Lawesson, J. E. (1999). An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biological conservation, 91(1), 9–22.
- Huntley, B., & Webb III, T. (2012). (Eds.). Vegetation history (Vol. 7). Springer Science & Business Media.
- Ouyang, W., Hao, F. H., Wang, X. L., & Cheng, H. G. (2008). Nonpoint source pollution responses simulation for conversion cropland to forest in mountains by SWAT in China. Environmental management, 41(1), 79–89.