Grzeszczyk, S., & Matuszek-Chmurowska, A. (2004). Wpływ rodzaju kruszywa na mikrostrukturę warstwy przejściowej i właściwości betonów wysokowartościowych (The influence of aggregate type on the microstructure of interfacial transition zone and properties of high performance concretes). L Konferencja Naukowa KILiW PAN i KN PZITB, t.3, Warszawa-Krynica, 117–124 (in Polish).
Hong, L., Gu, X., & Lin, F. (2014). Influence of aggregate surface roughness on mechanical properties of interface and concrete. Construction and Building Materials, 65, 338–349.
Ajdukiewicz, A., & Kliszczewicz, A. (1998). Odkształcalność doraźna betonów wysokiej wytrzymałości (Instantaneous deformability of high strength concrete). XLIV Konferencja Naukowa KILiW PAN i KN PZITB, t.4, Poznań-Krynica, 5–12 (in Polish).
Aïtcin, P. C., & Mehta, P. K. (1990). Effect of coarse-aggregate characteristics on mechanical properties of high-strength concrete. ACI Materials Journal, 87(2), 103–107.
Seruga, A., Kańka, S., & Lisowicz, T. (2012). Moduł sprężystości betonów na kruszywie granitowym w świetle badań doświadczalnych (Granite concrete modulus of elasticity in view of experimental investigations). Czasopismo Techniczne, Budownictwo, 2, 103–117 (in Polish).
Piasta, J. (1971). Badanie kruszyw węglanowych z województwa kieleckiego i ich zastosowanie do betonów konstrukcyjnych (Testing of carbonate aggregates from Kielce region and their using to structural concretes). Praca doktorska. Politechnika Warszawska, Warszawa (in Polish).
Elsharief, A., Cohen, M. D., & Olek, J. (2003). Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone. Cement and Concrete Research, 33(11), 1837–1849.
Gao, Y., De Schutter, G., Ye, G., Tan, Z., & Wu, K. (2014). The ITZ microstructure, thickness and porosity in blended cementitious composite: effects of curing age, water to binder ratio and aggregate content. Composites: Part B 60, 1–13.
Chmura, K., & Lewowicki, S. (1962). Kwarcyty trzeciorzędowe okolic Bolesławca na Dolnym Śląsku (Tertiary quartzites around Boleslawiec on Lower Silesia). Biuletyn Instytutu Geologicznego, 173, Warszawa, 5–56 (in Polish).
Ponce, J.M., & Batic, O.R. (2006). Different manifestations of the alkali-silica reaction in concrete according to the reaction kinetics of the reactive aggregate. Cement and Concrete Research, 36(6), 1148–1156.
Lukschová, Š, Přikryl, R, & Pertold, Z. (2009). Petrographic identification of alkali–silica reactive aggregates in concrete from 20th century bridges. Construction and Building Materials, 23(2), 734–741.
Hong, L., Gu, X., & Lin, F. (2014). Influence of aggregate surface roughness on mechanical properties of interface and concrete. Construction and Building Materials, 65, 338–349.
Guinea, G.V., El-Sayed, K., Rocco, C.G., & et al. (2002). The effect of the bond between the matrix and the aggregates on the cracking mechanism and fracture parameters of concrete. Cement and Concrete Research, 32(12), 1961–1970.
PN-EN 206:2014-04 (2014). Beton. Wymagania, właściwości, produkcja i zgodność. (Concrete – Specification, performance, production and conformity) (in Polish).
Scrivener, K.L., Crumbie, A.K., & Laugesen, P. (2004). The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Science, 12(4), 411–21.
Ping, X., Beaudoin, J.J., & Brousseau, R. (1991). Effect of the aggregate size on transition zone properties at the Portland cement paste interface. Cement and Concrete Research, 21(6), 999–1005.
PN-EN 1992-1-1:2008 (2008). Eurokod 2. Projektowanie konstrukcji z betonu. Część 1-1: Reguły ogólne i reguły dla budynków (Eurocode 2. Design of concrete structures. Part 1-1: General rules and rules for buildings) (in Polish).