Have a personal or library account? Click to login

Effect of Cellular Concrete Powder on Durability of Normal Strength Concrete

Open Access
|Apr 2019

References

  1. Gyurkó, Z., Szijártó, A., & Nemes, R. (2017). Increasing freeze-thaw resistance of concrete by additions of powdered cellular concrete and clay bricks. Procedia Engineering, 193(C), 11–18.
  2. He, Z., Tang, S. W., Zhao, G. S., & Chen, E. (2016). Comparison of three and one dimensional attacks of freeze-thaw and carbonation for concrete samples. Construction and Building Materials, 127, 596–606.
  3. Łaźniewska-Piekarczyk, B. (2013). The frost resistance versus air voids parameters of high performance self-compacting concrete modified by non-air-entrained and mixtures. Construction and Building Materials, 48, 1209–1220.
  4. Nemes, R., & Fenyvesi, O. (2013). Frost resistance of LWAC made with different lightweight aggregates in urban environment. CCC 2013 – Concrete Structures in Urban Areas, Wroclaw, Poland, 478–481.
  5. Abed, M., & Nemes, R. (2017). Possibility of Producing Green, Self-Compacting, High Performance Concrete (GSCHPC). Concrete Structures, 18, 21–29.
  6. Siddique, R., & Klaus, J. (2009). Influence of metakaolin on the properties of mortar and concrete: a review. Applied Clay Science, 43(3–4), 392–400.
  7. Gruber, K. A., Ramlochan, T., Boddy, A., Hooton, R. D., & Thomas, M. D. A. (2001). Increasing concrete durability with high-reactivity metakaolin. Cement and Concrete Composites, 23(6), 479–84.
  8. Cassagnabère, F., Mouret, M., Escadeillas, G., Broilliard, P., & Bertrand, A. (2010). Metakaolin, a solution for the precast industry to limit the clinker content in concrete: mechanical aspects. Construction and Building Materials, 24(7), 1109–1118.
  9. Zeníšek, M., Vlach, T., & Laiblová, L. (2017). Dosage of Metakaolin in high performance concrete. Key Engineering Materials, 722, 311–315.
  10. Borosnyói, A. (2016). Long term durability performance and mechanical properties of high performance concretes with combined use of supplementary cementing materials. Construction and Building Materials, 112, 307–324.
  11. Nehme, S. G. (2015). Kiegészítőanyagok hatása a szokványos és az öntömörödô betonokra 2. rész. Laboratóriumi vizsgálatok (Effect of supplementary materials on normal and self-compacting concretes 2. Part 2 – Laboratory tests). Építőanyag – Journal of Silicate Based and Composite Materials, 67(2), 72–78.
  12. Fenyvesi, O., & Jankus, B. (2015). Opportunities in recycling AAC waste as aggregate for lightweight concrete. Építőanyag – Journal of Silicate Based and Composite Materials, 67, 66–70.
  13. European Committee for Standardization (CEN). CEN/TS 12390-9 Testing hardened concrete – Part 9: Freeze-thaw resistance – Scaling, 24.
  14. Szijártó, A. (2016). Performance studies of concretes containing perlite supplementary cementitious material (Bachelor Thesis, Budapest University of Technology and Economics). Hungary, Budapest.
DOI: https://doi.org/10.21307/acee-2018-022 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 59 - 64
Submitted on: Jun 25, 2017
Accepted on: Feb 5, 2018
Published on: Apr 1, 2019
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Zoltán GYURKÓ, Anna SZIJÁRTÓ, Mohammed ABED, Rita NEMES, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.