Have a personal or library account? Click to login

Shear Capacity of Prestressed FRC Beams with Sparse Stirrup Spacing

Open Access
|Apr 2019

References

  1. Klikowicz, P., Salamak, M. and Poprawa, G. (2016). Structural Health Monitoring of Urban Structure, Procedia Engineering, 161, 958–962.
  2. Balázs, L. Gy. & Kovács, I. (1997). Increase in shear strength of beams by applying fiber reinforcement, In F. Blaschke, G. Günther & J. Kollegger (Eds.) Proceedings of the Symposium organized for the 65th birthday of Prof. G. Mehlhorn „Materialmodelle und Methoden zur wirklichkeitsnahen Berechnung von Beton, Stahlbeton- und Spannbetonbauteilen”, ISBN 3-88122-903-5, Kassel, 10–17.
  3. Dulácska, E. (1999). Design theory of steel fibre reinforced concrete and reinforced concrete, (in Hungarian), Proceedings of the Conference: Fibre reinforced concrete – from the research till the application, Hungarian Group of fib, Budapest, ISBN 963-420-589-5.
  4. Kovács, I. & Balázs, L., Gy. (2003). Structural behaviour of steel fibre reinforced concrete, Journal of Structural Concrete, 2, 57–63.
  5. Kovács, I. & Balázs, L., Gy. (2004). Structural performance of steel fibre reinforced concrete, Publ. Comp. of Budapest University of Technology and Economics, ISBN 963-410-822-3.
  6. Grunert, J., P., Strobach, C. & Teutsch, M. (2004). Prestressed steel fibre reinforced SCC beams without steel reinforcement, (in German), BFT International, 2004/04, Bauverlag BV GmbH, Gütersloh, 50–55.
  7. Kovács, G. (2014). Partial replacement of reinforcement with fibre reinforced traditional concrete. Report 1: Fibre comparison and selection, ASA Construction Ltd. – Consolis Group Material Development Centre, Budapest.
  8. Koris, K., Bódi, I., Polgár, L. & Mansour, K. (2015). Experimental analysis of the shear capacity of prestressed FRC beams, Proceedings of the 8th International Conference Fibre Concrete 2015 – Technology, Design, Application, Prague.
  9. Karimi, R. (2016). DEM and FEM analysis of fibre-reinforced prefabricated concrete beams, MSc Thesis at the Budapest University of Technology, Faculty of Civil Engineering, Budapest.
  10. Deutscher Ausschuss für Stahlbeton (2012). DAfStb-Steel Fibre Concrete Directives, (in German).
  11. Gödde, L., Strack, M. & Mark, P. (2010). Structural elements made of steel fibre reinforced concrete and steel fibre strengthened concrete, (in German), Beton- und Stahlbetonbau 105(2010), Heft, 2 Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin, 78–91.
  12. Rosenbusch, J. (2003). Shear force capacity of steel fibre reinforced beams, (in German), Dissertation, Technische Universität Braunschweig, Department of civil engineering.
  13. Schwarz, P. (2002). Steel fibre reinforced concrete - New design principles: Performance classes, (in German), Concrete-Industrial-Floors.
  14. Koris, K. & Bódi, I. (2017). Shear strength of FRC beams with reduced shear reinforcement, Concrete Structures, 18, Hungarian Group of fib, Budapest, 36–44.
  15. Aveston, J., Cooper, G. A. & Kelly, A. (1971). The Properties of Fibre Composites, Conference Proceedings, National Physical Laboratory, IPC Science and Technology Press Ltd, Paper I.
  16. Pająk, M., & Ponikiewski, T. (2015). The laboratory investigation on the influence of the polypropylene fibres on selected mechanical properties of hardened self-compacting concrete, Architecture Civil Engineering Environment 8(3),69–78.
DOI: https://doi.org/10.21307/acee-2018-008 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 81 - 88
Submitted on: Jun 25, 2017
Accepted on: Jan 5, 2018
Published on: Apr 1, 2019
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Kálmán KORIS, István BÓDI, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.