Hasan, A., Vuolle, M., Siren, K. (2008). Minimisation of life cycle cost of a detached house using combined simulation and optimization. Building and Environment, 43, 2022–2034.10.1016/j.buildenv.2007.12.003
Ascione, F., Bellia, L., Capozzoli, A., Minichiello, F. (2009). Energy saving strategies in air-conditioning for museums. Applied Thermal Engineering, 29, 676–686.10.1016/j.applthermaleng.2008.03.040
Ferdyn-Grygierek, J. (2014). Indoor environment quality in the museum building and its effect on heating and cooling demand. Energy and Buildings, 85, 32–44.10.1016/j.enbuild.2014.09.014
Ferdyn-Grygierek, J., Baranowski, A. (2015). Internal environment in the museum building Assessment and improvement of air exchange and its impact on energy demand for heating. Energy and Buildings, 92, 45–54.10.1016/j.enbuild.2015.01.033
Znouda, E., Ghrab-Morcos, N., Hadj-Alouane, A. (2007). Optimization of Mediterranean building design using genetic algorithms. Energy and Buildings, 39, 148–153.10.1016/j.enbuild.2005.11.015
Liu, Y., Dong, H., Lohse, N., Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259–272.10.1016/j.ijpe.2016.06.019
Yang, C., Li H., Rezgui, Y., Petri, I., Yuce, B., Chen, B., Jayan B. (2014). High throughput computing based distributed genetic algorithm for building energy consumption optimization. Energy and Buildings, 76, 92–101.10.1016/j.enbuild.2014.02.053
Lu, Y., Shengwei, W., Yang, Z., Chengchu, Y. (2015). Renewable energy system optimization of low/zero energy buildings using single-objective and multiobjective optimization methods. Energy and Buildings, 89, 61–75.10.1016/j.enbuild.2014.12.032
Čongradac, V., Kulić, F. (2012). Recognition of the importance of using artificial neural networks and genetic algorithms to optimize chiller operation. Energy and Buildings, 47, 651–658.10.1016/j.enbuild.2012.01.007
Mossolly, M., Ghali, K., Ghaddar, N. (2009). Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm. Energy, 34, 58–66.10.1016/j.energy.2008.10.001
Bichiou, Y., Krarti, M. (2011). Optimization of envelope and HVAC systems selection for residential buildings. Energy and Buildings, 43(12), 3373–3382.10.1016/j.enbuild.2011.08.031
Tuhus-Dubrow, D., Krarti, M. (2010). Genetic-algorithm based approach to optimize building envelope design for residential buildings. Building and Environment, 45, 1574–1581.10.1016/j.buildenv.2010.01.005
Magnier, L., Haghighat, F. (2010). Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm and Artificial Neural Network. Building and Environment, 45, 739–746.10.1016/j.buildenv.2009.08.016
Król, M., Białecki, R. (2003). Optimization of a window frame by BEM and genetic algorithm. Int. J. Numer. Methods Heat Fluid Flow, 13(5/6), 565–580.10.1108/09615530310482454
Saari, A., Kalamees, T., Jokisalo, J., Michelsson, R., Alanne, K., Kurnitski, J. (2012). Financial viability of energy-efficiency measures in a new detached house design in Finland. Applied Energy, 92, 76–83.10.1016/j.apenergy.2011.10.029
Gasparella, A., Pernigotto, G., Cappelletti, F., Romagnoni, P., Baggio, P. (2011). Analysis and modelling of window and glazing systems energy performance for a well insulated residential building. Energy and Buildings, 43, 1030–1037.10.1016/j.enbuild.2010.12.032
Menzies, G.F., Wherrett, J.R. (2005). Windows in the workplace: examining issues of environmental sustainability and occupant comfort in the selection of multi-glazed windows. Energy and Buildings, 37(6), 623–630.10.1016/j.enbuild.2004.09.012
Ruiz, M.C., Romero, E. (2011). Energy saving in the conventional design of a Spanish house using thermal simulation. Energy and Buildings, 43, 3226–3235.10.1016/j.enbuild.2011.08.022
Filippin, C., Flores, Larsen, S., Lopez, Gay, E. (2008). Energy improvement of a conventional dwelling in Argentina through thermal simulation. Renewable Energy, 33, 2246–2257.10.1016/j.renene.2008.01.001
Yu, J., Yang, C., Tian, L. (2008). Low-energy envelope design of residential building in hot summer and cold winter zone in China. Energy and Buildings, 40, 1536–1546.10.1016/j.enbuild.2008.02.020
Kapsalaki, M., Leal, V., Santamouris, M. (2012). A methodology for economic efficient design of Net Zero Energy Buildings. Energy and Buildings, 55, 765–778.10.1016/j.enbuild.2012.10.022
Jaber, S., Ajib, S. (2011). Thermal and economic windows design for different climate zones. Energy and Buildings, 43, 3208–3215.10.1016/j.enbuild.2011.08.019
Stolarski, M. J., Krzyżaniak, M., Warmiński, K., Niksa, D. (2016). Energy consumption and costs of heating a detached house with wood briquettes in comparison to other fuels. Energy Conversion and Management, 121, 71–83.10.1016/j.enconman.2016.05.031
Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. 2002 nr 75 poz. 690 ze zm.). (Regulation of the Minister of Infrastructure of 12 April 2002 on the technical conditions that should be met by buildings and their location (Journal of Laws of the Republic of Poland No 75, with recast)).
Klein, S. A., Beckman, W. A., Mitchell, J. W., Duffie, J. A., Duffie, N. A., Freeman, T. L., Mitchell, J. C., et al. (2010). TRNSYS 17 A transient system simulation program. U. of W.-M. Solar Energy Laboratory, Ed.
Grygierek, K. (2014). Samoadaptacyjna metoda algo- rytmów genetycznych w optymalizacji przestrzennych kratownic (Self-adaptive method of genetic algorithm in optimization of spatial truss structures). Modelowanie Inżynierskie, 21(52), 80–86.
Grygierek, K. (2016). Optimization of trusses with self-adaptive approach in genetic algorithms. Architecture Civil Engineering Environment, 9(4), 67–78.10.21307/acee-2016-053
Ferdyn-Grygierek, J., Grygierek, K. (2017). Multivariable optimization of building thermal design using genetic algorithms. Energies, 10(10), 1570.10.3390/en10101570
Pełech, A. (2008). Wentylacja i klimatyzacja – pod- stawy. (Ventilation and air conditioning – fundamentals). Oficyna Politechniki Wrocławskiej. Wrocław.
ESRU Manual U02/1. (2002). The ESP-r system for building energy simulation. User Guide Version 10 Series. University of Strathclyde Energy Systems Research Unit. Glasgow.
Baranowski, A., Ferdyn-Grygierek, J. (2009). Heat demand and air exchange in a multifamily building – simulation with elements of validation. Building Services Engineering Research & Technology, 30(3), 227–240.10.1177/0143624408338139