Ožbolt, J., Oršanić, F., Balabanić, G. (2017). Modelling processes related to corrosion of reinforcement in concrete: coupled 3D finite element model. Structure and Infr. Engin. Maintenance, Management, Life-Cycle Design and Performance, 13(1), 135–146.10.1080/15732479.2016.1198400
Saetta, A., Scotta, R., Vitaliani, R. (1998). Mechanical behaviour of concrete under physicalchemical attacks. Journal of Engineering Mechanics, 124(10), 1100–1109.10.1061/(ASCE)0733-9399(1998)124:10(1100)
Koniorczyk, M., Gawin, D. (2008). Heat and moisture transport in porous building materials containing salt. Journal of Building Physics, 31(4), 279–300.10.1177/1744259107088003
Dao, L. T. N., Dao, V. T. N., Kim, S-H., Ann, K, Y. (2010) Modelling steel corrosion in concrete structures – part 1: a new inverse relation between current density and potential for the cathodic reaction. International Journal of electrochemical science, 5(3), 302–313.
Dao, L. T. N., Dao, V. T. N., Kim, S-H., Ann, K, Y. (2010). Modelling steel corrosion in concrete structures - part 2: a unified adaptive finite element model for simulation of steel corrosion. International Journal of electrochemical science, 5(3), 314–326
Bentur, A., Alexander, M. G. (2000). Engineering of the interfacial transition zone in cementitious composites. Materials and Structures, 33(2), 82–87.10.1007/BF02484160
Horne, A. T., Richardson, I. G., Brydson, R. M. D. (2007). Quantitative analysis of the microstructure of interfaces in steel reinforced concrete. Cement and Concrete Research 37(12), 1613–1623.10.1016/j.cemconres.2007.08.026
Ollivier, J. P., Maso, J. C., Bourdette, B. (1995). Interfacial Transition Zone in Concrete. Journal of Advanced Cement Based Materials, 2(1), 30–38.10.1016/1065-7355(95)90037-3
Liu, Y. (1996). Modelling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures (PhD thesis, Virginia Polytechnic Institute and State University). USA, Blacksburg, Virginia,.
Bhargava, K., Ghosh, A. K., Mori, Y., Ramanujam, S. (2005). Modelling of time to corrosion-induced cover cracking in reinforced concrete structures. Cement and Concrete Research, 35(11), 2203–2218.10.1016/j.cemconres.2005.06.007
Pantazopoulou, S. J., Papoulia, K. D. (2001). Modelling cover-cracking due to reinforced corrosion in RC structures. Journal of Engineering Mechanics, 127(4), 342–351.10.1061/(ASCE)0733-9399(2001)127:4(342)
Krykowski, T. (2012). Modelling of concrete cover damage caused by reinforcement corrosion in reinforced concrete. Polish Academy of Sciences, Committee for Civil and Water Engineering, Warsaw, Studia z Zakresu Inżynierii 78 (in Polish).
Molina, F. J., Alonso, C., Andrade, C. (1993). Cover cracking as a function of rebar corrosion: part 2 numerical model. Materials and Structures, 26(9), 532–548.10.1007/BF02472864
Suwito, C., Xi, Y. (2008). The effect of chloride- induced steel corrosion on service life of reinforced concrete structures. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, 4(3), 177–192.10.1080/15732470600688699
Krykowski, T., Wieczorek, B. (2017). Application of damage mechanics rules to evaluate the growth of corrosive deformations in transition layer. Corrosion Protection, 1(60), 3–6.
Zybura, A., Jaśniok, M., Jaśniok, T. (2011). Diagnostics of reinforced concrete structures. Testing of reinforcement corrosion and protective properties of concrete, t. II. Warsaw: Wydawnictwo Naukowe PWN (in Polish).
López, W., González, J. A. (1993). Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement. Cement and Concrete Research, 23(2), 368–376.10.1016/0008-8846(93)90102-F
Krykowski, T., Zybura, A. (2013). Modelling of reinforced concrete element damage as a result of reinforcement corrosion. Procedia Engineering 57, 614–623.10.1016/j.proeng.2013.04.078