Have a personal or library account? Click to login
Effect Of Metakaolin Developed From Local Natural Material Soorh On Workability, Compressive Strength, Ultrasonic Pulse Velocity And Drying Shrinkage Of Concrete Cover

Effect Of Metakaolin Developed From Local Natural Material Soorh On Workability, Compressive Strength, Ultrasonic Pulse Velocity And Drying Shrinkage Of Concrete

Open Access
|Aug 2018

References

  1. Sabir, B., S. Wild, and J. Bai(2001). Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites, 23(6), 441–454.10.1016/S0958-9465(00)00092-5
  2. Portland cement association (PCA) report.; Global cement consumption on the rise. Published on 3 June 2015.
  3. Rashad, A.M. and S.R. Zeedan (2011). The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Construction and Building Materials, 25(7), 3098–3107.10.1016/j.conbuildmat.2010.12.044
  4. Scrivener, K.L. and R.J. Kirkpatrick (2008). Innovation in use and research on cementitious material. Cement and concrete research, 38(2), 128–136.10.1016/j.cemconres.2007.09.025
  5. Park, S.-S. and H.-Y. Kang (2008). Characterization of fly ash-pastes synthesized at different activator conditions. Korean Journal of Chemical Engineering, 25(1), 78–83.10.1007/s11814-008-0013-6
  6. Samet, B., T. Mnif, and M. Chaabouni (2007). Use of a kaolinitic clay as a pozzolanic material for cements: formulation of blended cement. Cement and Concrete Composites, 29(10), 741–749.10.1016/j.cemconcomp.2007.04.012
  7. Habert, G., et al. (2008). Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cement and Concrete Research, 38(7), 963–975.10.1016/j.cemconres.2008.02.005
  8. Habert, G., et al. (2009). Clay content of argillites: Influence on cement based mortars. Applied Clay Science, 43(3), 322–330.10.1016/j.clay.2008.09.009
  9. Janotka, I., et al. (2010). Metakaolin sand–blendedcement pastes: Rheology, hydration process and mechanical properties. Construction and Building Materials, 24(5), 791–802.10.1016/j.conbuildmat.2009.10.028
  10. Morsy, M.S. and S.S. Shebl (2007). Effect of silica fume and metakaoline pozzolana on the performance of blended cement pastes against fire. Ceramics Silikaty, 51(1), 40.
  11. Duda, W.H. (1977). Manual tecnológico del Cemento. Reverte.
  12. Shvarzman, A., et al. (2003). The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cement and Concrete Research, 33(3), 405–416.10.1016/S0008-8846(02)00975-4
  13. Tironi, A., et al. (2012). Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Construction and Building Materials, 28(1), 276–281.10.1016/j.conbuildmat.2011.08.064
  14. Ramezanianpour, A. and H.B. Jovein. (2012). Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Construction and Building materials, 30, 470–479.10.1016/j.conbuildmat.2011.12.050
  15. Poon, C.-S., S. Kou, and L. Lam. (2006). Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Construction and building materials, 20(10), 858–865.10.1016/j.conbuildmat.2005.07.001
  16. Güneyisi, E., et al. (2012). Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Construction and Building Materials, 34, 120–130.10.1016/j.conbuildmat.2012.02.017
  17. Kim, H.-S., S.-H. Lee, and H.-Y. Moon (2007). Strength properties and durability aspects of high strength concrete using Korean metakaolin. Construction and building materials, 21(6), 1229–1237.10.1016/j.conbuildmat.2006.05.007
  18. Khatib, J. and J. Hibbert (2005). Selected engineering properties of concrete incorporating slag and metakaolin. Construction and building materials, 19(6), 460–472.10.1016/j.conbuildmat.2004.07.017
  19. Mermerdaş, K., et al. (2012). Strength development of concretes incorporated with metakaolin and different types of calcined kaolins. Construction and Building Materials, 37, 766–774.10.1016/j.conbuildmat.2012.07.077
  20. Duan, P., et al. (2013). Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Construction and Building Materials, 44, 1–6.10.1016/j.conbuildmat.2013.02.075
  21. Parande, A.K., et al. (2008). Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Construction and Building Materials, 22(3), 127–134.10.1016/j.conbuildmat.2006.10.003
  22. Wong, H. and H.A. Razak. (2005). Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance. Cement and Concrete Research, 35(4), 696–702.10.1016/j.cemconres.2004.05.051
  23. Khatib, J. (2008). Metakaolin concrete at a low water to binder ratio. Construction and Building Materials, 22(8), 1691–1700.10.1016/j.conbuildmat.2007.06.003
  24. Saand, A., et al. (2016). Development of Metakaolin as a Pozzolanic Material from Local Natural Material, Soorh. Arabian Journal for Science and Engineering, 41(12), 4937–4944.10.1007/s13369-016-2216-1
  25. Wild, S., J.M. Khatib, and A. Jones. (1996). Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cement and concrete research, 26(10), 1537–1544.10.1016/0008-8846(96)00148-2
  26. Güneyisi, E., M. Gesoğlu, and K. Mermerdaş. (2008). Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Materials and Structures, 41(5), 937–949.10.1617/s11527-007-9296-z
  27. Brooks, J. and M.M. Johari. (2001). Effect of metakaolin on creep and shrinkage of concrete. Cement and Concrete Composites, 23(6), 495–502.10.1016/S0958-9465(00)00095-0
  28. Wild, S., J. Khatib, and L. Roose. (1998). Chemical shrinkage and autogenous shrinkage of Portland cement-metakaolin pastes. Advances in Cement Research, 10(3), 109–119.10.1680/adcr.1998.10.3.109
  29. Kinuthia, J., et al. (2000). Self-compensating autogenous shrinkage in Portland cement–metakaolin–fly ash pastes. Advances in cement research, 12(1), 35–43.10.1680/adcr.2000.12.1.35
  30. Tironi, A., et al. (2013). Assessment of pozzolanic activity of different calcined clays. Cement and Concrete Composites, 37, 319–327.10.1016/j.cemconcomp.2013.01.002
  31. Mermerdaş, K., et al. (2013). Experimental evaluation and modeling of drying shrinkage behavior of metakaolin and calcined kaolin blended concretes. Construction and Building Materials, 43, 337–347.10.1016/j.conbuildmat.2013.02.047
  32. Ding, J.-T. and Z. Li. (2002). Effects of metakaolin and silica fume on properties of concrete. ACI Materials Journal, 99(4), 393–398.
  33. Zhang, M. and V.M. Malhotra. (1995). Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cement and Concrete Research, 25(8), 1713–1725.10.1016/0008-8846(95)00167-0
  34. Keleştemur, O. and B. Demirel. (2015). Effect of metakaolin on the corrosion resistance of structural lightweight concrete. Construction and Building Materials, 81, 172–178.10.1016/j.conbuildmat.2015.02.049
  35. Ramli, M.B. and O.R. Alonge. (2016). Characterization of metakaolin and study on early age mechanical strength of hybrid cementitious composites. Construction and Building Materials, 121, 599–611.10.1016/j.conbuildmat.2016.06.039
DOI: https://doi.org/10.21307/acee-2017-025 | Journal eISSN: 2720-6947 | Journal ISSN: 1899-0142
Language: English
Page range: 115 - 122
Submitted on: May 25, 2016
Accepted on: Mar 28, 2017
Published on: Aug 28, 2018
Published by: Silesian University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Abdullah Saand, Manthar Ali Keerio, Daddan khan Bangwar, published by Silesian University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.