References
- Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E.: Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA, 96, 14043–14048 (1999)
- Adams M.D., Nickel G.C., Bajaksouzian S., Lavender H., Rekha A.R, Jacobs M.R., Bonomo R.A.: Resistance to colistin in Acinetobacter baumannii assiociated with mutations in the PmrAB Two-Component System. Antimicrob. Agents Chemother. 53, 3628–3634 (2009)
- Aeschlimann J.R.: The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 23, 916–924 (2003)
- Ah Y.M, Kim A.J., Lee J.Y.: Colistin resistance in Klebsiella pneumoniae. Int. J. Antimicrob. Agents 44, 8–15 (2014)
- Aiba H., Mizuno T., Mizushima S.: Transfer of phosphoryl group between two regulatory proteins involved in osmoregulatory expression of the ompF and ompC genes in Escherichia coli. J. Biol. Chem. 264, 8563–8567 (1989)
- Appleby J.L., Parkinson J.S., Bourret R.B.: Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell. 86, 845–848 (1996)
- Ashby M.K.: Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. FEMS Microbiol. Lett. 231, 277–281 (2004)
- Bahar A.A., Ren D.: Antimicrobial peptides. Pharmaceuticals 6, 1543–1575 (2013)
- Baikalov I., I. Schroder M. Kaczor-Grzeskowiak D. Cascion R.P., Gunsalus R.E. Dickerson: NarL dimerisation? Suggestive evidence from a new crystal form. Biochemistry, 37, 3665–3676 (1998)
- Band V.I., Crispell E.K., Napier B.A. i wsp.: Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae. Nat. Microbiol. 1, 16053. doi: 10.1038/nmicrobiol.2016.53 (2016)
- Beceiro A., Llobet E., Aranda J. i wsp.: Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob. Agents Chemother. 55, 3370–3379 (2011)
- Bent Z.W., Young G.M.: Contribution of BlaA and BlaB beta-lactamases to antibiotic susceptibility of Yersinia enterocolitica biovar 1B. Antimicrob. Agents Chemother. 54, 4000–4003 (2010)
- Bentzmann S., Plesiat P.: The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ. Microbiol. 13, 1655–1665 (2011)
- Bilwes A.M., Quezada C.M., Croal L.R., Crane B.R., Simon M.I.: Nucleotide binding by the histidine kinase CheA. Nat. Struct. Biol. 8, 353–360 (2001)
- Bourret R.B., Silversmith R.E.: Two-component signal transduction. Curr. Opin. Microbiol. 13, 113–115 (2010)
- Brzostek K., Hrebenda J.: Outer membrane permeability to β-lactam antibiotics in Yersinia enterocolitica. J. Gen. Microbiol. 134, 1634–1540 (1988)
- Brzostek K., Hrebenda J., Benz R., Boos W.: The OmpC protein of Yersinia enterocolitica: purification and properties. Res. Microbiol. 140, 599–614 (1989)
- Brzostek K., Nichols W.W.: Outer membrane permeability and porin proteins of Yersinia enterocolitica. FEMS Microbiol. Lett. 70, 275–278 (1990)
- Brzostek K., Raczkowska A.: The YompC protein of Yersinia enterocolitica: molecular and physiological characterization. Folia Microbiol. 52, 73–80 (2007)
- Brzostek K., Skorek K., Raczkowska A.: OmpR, a central integrator of several cellular responses in Yersinia enterocolitica. Adv. Exp. Med. Biol. 954, 325–334 (2012)
- Bush K., Jacoby G. A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54, 969–976 (2010)
- Cabot G., Zamorano L., Moya B. i wsp.: Evolution of Pseudomonas aeruginosa Antimicrobial Resistance and Fitness under Low and High Mutation Rates. Antimicrob. Agents Chemother. 60, 1767–1778 (2016)
- Callie O., Rossier C., Perron K.: A copper-activated Two-Component System interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J. Bacteriol. 189, 4561–4568 (2007)
- Capra E.J., Laub M.T.: Evolution of two-component signal transduction systems. Annu. Rev. Microbiol. 66, 325–347 (2012)
- Cardona S.T., Choy M., Hogan A.M.: Essential Two-Component Systems regulating cell envelope functions: Opportunities for novel antibiotic therapies. J. Membr. Biol. 251, 75–89 (2018)
- Chakraborty S., Kenney L.J.: A new role of OmpR in acid and osmotic stress in Salmonella and E. coli. Front Microbiol. 22, 2656. doi: 10.3389/fmicb.2018.02656 (2018)
- Chen Y-T., Chang H.Y., Lu C.L., Peng H-L.: Ewolutionary analysis of the Two-Component Systems in Pseudomonas aeruginosa PA01. J. Mol. Evol. 59, 725–737 (2004)
- Chitsaz M., Brown M.H.: The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem. 61, 127–139 (2017)
- Clarke D.J.: The Rcs phosphorelay: more than just a two-component pathway. Future Microbiol. 5, 1173–1184 (2010)
- Dam S., Pages J.M., Masi M.: Stress responses, outer membrane permeability control and antimicrobial resistance in Enterobacteriaceae. Microbiology, 164, 260–267 (2018)
- Darwin A.J., Stewart V.: Expression of the narX, narL, narP, and narQ genes of Escherichia coli K-12: regulation of the regulators. J. Bacteriol. 177, 3865–3869 (1995)
- De Silva P.M., Kumar A.: Signal Transduction Proteins in Acinetobacter baumannii: Role in antibiotic resistance, virulence, and potential as drug targets. Front Microbiol. 10:49. doi: 10.3389/fmicb.2019.00049 (2019)
- Dorman C.J., Chatfield S., Higgins C.F., Hayward C., Dougan G.: Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect. Immun. 57, 2136–2140 (1989)
- Dube P.: Interaction of Yersinia with the gut: mechanisms of pathogenesis and immune evasion. Curr. Top. Microbiol. Immunol. 337, 61–91 (2009)
- EFSA Journal 2018, 17 (12): 5926
- Eguchi Y., Utsumi R.: A novel mechanism for connecting bacterial two-component signal-transduction systems. Trends. Biochem. Sci. 30, 70–72 (2006)
- Eppinger M., Rosovitz M.J., Fricke W.F., Rasko D.A., Kokorina G., Fayolle C., Lindler L.E., Carniel E., Ravel J.: The complete genome sequence of Yersinia pseudotuberculos is IP31758, the causative agent of Far East scarlet – ike fever. PLoS Genet. 3, e142 (2007)
- Fàbrega A., Vila J.: Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin. Microbiol. Rev. 26, 308–341 (2013)
- Fernandez L., Gooderham W.J., Bains M., McPhee J.B., Wiegand I., Hancock R.E.W.: Adaptive resistance to the „Last Hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel Two-Component Regulatory System ParR-ParS. Antimicrob. Agents Chemother. 54, 3372–3382 (2010)
- Fernandez L., Hancock R.E.: Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25, 661–681 (2012)
- Foussard M., Cabantous S., Pedelacq J.D., Guillet V., Tranier S., Mourey L., Birck C., Samama J.P.: The molecular puzzle of two-component signaling cascades. Microbes Infect. 3, 417–424 (2001)
- Gaddy J.A., Actis L.A.: Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 4, 273–278 (2009)
- Galindo C.L., Rosenzweig J.A., Kirtley M.L., Chopra A.K.: Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in human yersiniosis. J. Pathog. 182051. 10.4061/2011/182051 (2011)
- Galperin M.Y.: Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol. 188, 4169–4182 (2006)
- Galperin M. Y., Higdon R., Kolker E.: Interplay of heritage and habitat in the distribution of bacterial signal transduction systems Mol. Bio. Syst. 6, 721–728 (2010)
- Gooderham W.J., Hancock R.E.W.: Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol. Rev. 33, 279–294 (2008)
- Gunn J.S.: The Salmonella PmrAB regulon lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol. 16, 284–290 (2008)
- Gunn J.S., Ernst R.K., McCoy A.J., Miller S.I.: Constitutive mutations of the Salmonella enterica serovar Typhimurium transcriptional virulence regulator phoP. Infect. Immun. 68, 3758–3762 (2000)
- Gunn J.S., Lim K.B., Krueger J., Kim K., Guo L., Hackett M., Miller S.I.: PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol. Microbiol. 27, 1171–1182 (1998)
- Guo X., Sun Y.C.: New insights into the non-orthodox two component rcs phosphorelay system. Front. Microbiol. 8, 2014 (2017)
- Hancock R.E.W., Chapple D.S.: Peptide antibiotics. Antimicrob. Agents Chemother. 43, 1317–1323 (1999)
- Hancock R.E.W., Speert D.P.: Antibiotic resistance in Pseudomonas aeruginosa: mechanism and impact on treatment. Drug Resist. Updat. 3, 247–255 (2000)
- Hanson N.D., Sanders C.C.: Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr Pharm Des. 5, 881–894 (1999)
- Hirakawa H., Nishino K., Hirata T., Yamaguchi A.: Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J. Bacteriol. 185, 1851–1856 (2003)
- Hoch J.A.: Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3, 165–170 (2000)
- Hoiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O.: Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35, 322–332 (2010)
- Itou H., Tanaka I.: The OmpR-family of proteins: Insight into the tertiry structure and functions of Two-component regulator proteins. J. Biochem. 129, 343–350 (2001)
- Jacoby G.A., Bush K.: β-Lactam Resistance in the 21st Century: w Frontiers in Antimicrobials Resistance pod redakcją D.G. White, M.N Alekshun P.F., McDermott ASM Press, Washington, D.C. (2005)
- Jana S., Deb J.K.: Molecular understanding of aminoglycoside action and resistance. Appl. Microbiol. Biotechnol. 70, 140–150 (2006)
- Juda M., Dadas E., Malm A.: Rola dwuskładnikowych systemów regulacyjnych w chorobotworczości i lekooporności bakterii. Post. Mikrobiol. 46, 237–247 (2007)
- Kato A., Groisman E.A.: Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev. 18, 2302–2313 (2004)
- Kenney L.J.: Structure/function relationships in OmpR and other winged helix transcription factors. Curr. Opin. Microbiol. 5, 135–141 (2002)
- Koretke K.K., Lupas A.N., Warren P.V., Rosenberg M., Brown J.R.: Evolution of two-component signal transduction. Mol. Biol. Evol. 17, 1956–1970 (2000)
- Kyoto Encyclopedia of Genes and Genomes (KEGG) https://www.genome.jp/kegg/pathway.html (18.04. 2020)
- Kyriakidis D.A., Tiligada E.: Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Amino Acids. 37, 443–458 (2009)
- Lau C.H., Fraud S., Jones M., Peterson S.N., Poole K.: Mutational activation of the AmgRS two-component system in aminoglycoside-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 2243–2251 (2013)
- Lee S., Hinz A., Bauerle E. i wsp.: Targeting a bacterial stress response to enhance antibiotic action. Proc. Natl Acad. Sci. USA, 106, 14570–14575 (2009)
- Lee C.R., Lee J.H., Park M. i wsp.: Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front. Cell. Infection Microbiol. 7, 55 (2017)
- Lingzhi L., Haojie G., Dan G., Hongmei M., Yang L., Mengdie J., Chengkun Z., Xiaohui Z.: The role of two-component regulatory system in beta-lactam antibiotics resistance. Microbiol. Res. 215, 126–129 (2018)
- Liu C., Sun D., Zhu J., Liu W.: Two-Component Signal Transduction Systems: A major strategy for connecting input stimuli to biofilm formation. Front. Microbiol. 9:3279. doi: 10.3389/fmicb.2018.03279 (2018)
- Long C., Jones T.V., Vugia D.J., Scheftel J., Strockbine N., Ryan P., Shiferaw B., Tauxe R.V., Gould L.H.: Yersinia pseudotuberculosis and Y. enterocolitica infections, FoodNet, 1996–2007. Emerg. Infect. Dis. 16, 566–567 (2010)
- Macfarlane E.J.A., Kwasnicka A., Hancock R.E.W.: Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobiological cationic peptides and aminoglycosides. Microbiology, 146, 2543–2554 (2000)
- Macfarlane E.J.A., Kwasnicka A., Ochs M.M., Hancock R.E.W.: PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol. Microbiol. 34, 305–316 (1999)
- Marceau M., Sebbane F., Ewann F., Collyn F., Lindner B., Campos M.A., Bengoechea J.A., Simonet M.: The pmrF polymyxin-resistance operon of Yersinia pseudotuberculosis is upregulated by the PhoP-PhoQ two-component system but not by PmrA-PmrB, and is not required for virulence. Microbiology, 150, 3947–3957 (2004)
- Marchal K., Keersmaecker S.D., Monsieurs P., van Boxel N., Lemmens K., Thijs G., Vanderleyden J., Moor B.D.: In silico identification and experimental validation of PmrAB targets in Salmonella typhimurium by regulatory motif detection. Genome Biol. 5, R9 (2004)
- Martinez-Hackert E., Stock A.M.: Structural Relationships in the OmpR Family of Winged – Helix Transcription Factors. J. Mol. Biol. 269, 301–312 (1997)
- McClelland M., Wilson R.K. i wsp.: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413, 852–856 (2001)
- McPhee J.B., Bains M., Winsor G., Lewenza S., Kwasnicka A., Brazas M.D., Brinkman F.S.L., Hancock R.E.W.: Contribution of the PhoP-PhoQ and PmrA-PmrB Two-Component Regulatory Systems to Mg2+ induced gene regulation in Pseudomonas aeruginosa. J. Bacteriol. 188: 3995–4006 (2006)
- McPhee J.B., Lewenza S., Hancock R.E.W.: Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50, 205–217 (2003)
- Mihai M.M., Holban A.M., Giurcaneanu C., Popa L.G., Oanea R.M., Lazar V., Chifiriuc M.C., Popa M., Popa M.I.: Microbial biofilms: impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections. Curr. Top. Med. Chem. 15:1552–1576. doi: 10.2174/1568026615666150414123800 (2015)
- Mikkelsen H., Sivaneson M., Filloux A.: Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol. 13, 1666–1681 (2011)
- Monteagudo-Cascales E., Garcia-Maurino S.M., Santero E., Canosa I.: Unraveling the role of the CbrA histidine kinase in the signal transduction of the CbrAB two-component system in Pseudomonas putida. Sci. Rep. 9, 9110. doi: 10.1038/s41598-019-45554-9 (2019)
- Moskowitz S.M., Ernst R.K., Miller S.I: PmrAB, a Two-Component Regulatory System of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J. Bacteriol. 186, 575–579 (2004)
- Mouslim C., Groisman E.A.: Control of the Salmonella ugd gene by three two-component regulatory systems. Mol. Microbiol. 47, 335–344 (2003)
- Muller C., Plesiat P., Jeannot K.: A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 55, 1211–1221 (2011)
- National Center for Biotechnology Information: Census of bacterial signal transduction proteins, http://www.ncbi.nlm.nih.gov/Complete_Genomes/SignalCensus.html (18.04.2020)
- Nieckarz M., Raczkowska A., Dębski J., Kistowski M., Dadlez M., Heesemann J., Rossier O., Brzostek K.: Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol. 18, 997–1021 (2016)
- Nikaido H.: Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003)
- Ninfa A.J., Magasanik B.: Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA, 83, 5909–5913 (1986)
- Nishino K.: Regulation of the expression of bacterial multidrug exporters by Two-Component Signal Transduction Systems. Methods Mol. Biol. 1700, 239–251. doi: 10.1007/978-1-4939-7454-2_13 (2018)
- Niumsup P., Simm A.M., Nurmahomed K., Walsh T.R., Bennett P.M., Avison M.B.: Genetic linkage of the penicillinase gene, amp, and blrAB, encoding the regulator of beta-lactamase expression in Aeromonas spp. J. Antimicrob. Chemother. 51, 1351–1358. doi: 10.1093/jac/dkg247 (2003)
- Nixon B.T., Ronson C.W., Ausubel F.M.: Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA, 83, 7850–7854 (1986)
- Nowak A., Tyski S.: Dwuskładnikowe systemy regulacyjne ziarenkowców Gram-dodatnich i ich rola w tworzeniu biofilmu. Post. Mikrobiol. 51, 265–276 (2012)
- Olaitan A.O., Morand S., Rolain J.M.: Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front. Microbiol. 5, 643 (2014)
- Pages J.M., James C.E., Winterhalter M.: The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6, 893–903 (2008)
- Papon N., Stock A.M.: What do archaeal and eukaryotic histidine kinases sense? F1000Res. doi: 10.12688/f1000research.20094.1. (2019)
- Park H., Inouye M.: Mutational analysis of the linker region of EnvZ an osmosensor in Escherichia coli. J. Bacteriol. 179, 4382–4390 (1997)
- Park J.Y., Kim S., Kim S.M., Cha S.H., Lim S.K., Kim J.: Complete genome sequence of multidrug-resistant Acinetobacter baumannii strain 1656–2, which forms sturdy biofilm. J. Bacteriol. 193, 6393–6394 (2011)
- Pelton J.G., Kustu S., Wemmer D.E.: Solution structure of the DNA-binding domain of NtrC with three alanine substitutions. J. Mol. Biol. 292, 1095–1110 (1999)
- Perron K., Caille O., Rossier C., Delden C., Dumas J-L., Kohler T.: CzcR-CzcS, a two-component System involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J. Biol. Chem. 279, 8761–8768 (2004)
- Pirrung M.C.: Histidine kinases and two-component signal transduction systems. Chem. Biol. 6, 167–175 (1999)
- Poole K.: Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 20, 227–234 (2012)
- Raczkowska A., Trzos J., Lewandowska O., Nieckarz M., Brzostek K.: Expression of the AcrAB components of the AcrAB-TolC multidrug efflux pump of Yersinia enterocolitica is subject to dual regulation by OmpR. PloS One, 10, e0124248. doi: 10.1371/journal.pone.0124248 (2015)
- Raetz C.R., Reynolds C.M., Trent M.S., Bishop R.E.: Lipid A modification systems in Gram-negative bacteria. Ann. Rev. Bio. 76, 295–329 (2007)
- Rather P.N., Paradise M.R., Parojcic M.M., Patel S.: A regulatory cascade involving AarG, a putative sensor kinase, controls the expression of the 2_-N-acetyltransferase and an intrinsic multiple antibiotic resistance (Mar) response in Providencia stuartii. Mol. Microbiol. 28, 1345–1353 (1998)
- Richards S.M., Strandberg K.L., Gunn J.S.: Salmonella-regulated lipopolysaccharide modifications. Subcell. Biochem. 53, 101–122 (2010)
- Rodrigue A., Quentin Y., Lazdunski A., Mejean V., Foglino M.: Two-component system in Pseudomonas aeruginosa: why so many? Trends Microbiol. 8, 498–504 (2000)
- Santajit S., Indrawattana N.: Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed. Res. Int. 2475067, doi: 10.1155/2016/2475067 (2016)
- Seshadri R., Heidelberg J.F. i wsp. Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J. Bacteriol. 188, 8272–8282 (2006)
- Sharma D., Misba L., Khan A.U.: Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 8: 76. doi: 10.1186/s13756-019-0533-3 (2019)
- Shaulsky G., Escalante R., Loomis W.F.: Developmental signal transduction pathways uncovered by genetic suppressors. Proc. Natl. Acad. Sci. USA, 93, 15260–15265 (1996)
- Shi X., Wegener-Feldbrügge S., Huntley S., Hamann N., Hedderich R., Søgaard-Andersen L.: Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J. Bacteriol. 190, 613–624. doi: 10.1128/JB.01502-07 (2008)
- Singh S., Singh S.K., Chowdhury I., Singh R.: Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 11, 53–62 (2017)
- Stock I., Heisig P., Wiedemann B.: Expression of β-lactamases in Yersinia enterocolitica strains of biovars 2, 4 and 5. J. Med. Microbiol. 48, 1023–1027 (1999)
- Stock J.B., Ninfa A.J., Stock A.M.: Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 53, 450–490 (1989)
- Stover C.K., Olson M.V. i wsp.: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 406, 959–964 (2000)
- Sun J., Deng Z., Yan A.: Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 453, 254–267 (2014)
- Szczesny M., Beloin C., Ghigo J.M.: Increased osmolarity in biofilm triggers RcsB-dependent lipid A palmitoylation in Escherichia coli. mBio 9, pii:e01415–18 (2018)
- Tayler A.E., Ayala J.A., Niumsup P., Westphal K., Baker J.A., Zhang L., Walsh T.R., Wiedemann B., Bennett P.M., Avison M.B.: Induction of beta-lactamase production in Aeromonas hydrophila is responsive to beta-lactam-mediated changes in peptidoglycan composition. Microbiology. 156, 2327–2335 (2010)
- Thomson N.R., Prentice M.B. i wsp. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet 2, e206. doi: 10.1371/journal.pgen.0020206 (2006)
- Tipton K.A., Rather P.N.: An ompR/envZ two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in Acinetobacter baumannii strain AB5075. J. Bacteriol. 199, doi: 10.1128/JB.00705-16 (2017)
- Tiwari S., Jamal S.B., Hassan S.S., Carvalho P.V.S.D., Almeida S., Barh D., Ghosh P., Silva A., Castro T.L.P., Azevedo V.V.: Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview. Front. Microbiol. 10; 8:1878. doi: 10.3389/fmicb.2017.01878 (2017)
- Urao T., Yamaguchi-Shinozaki K., Shinozaki K.: Two-component systems in plant signal transduction. Trends Plant Sci. 5, 67–74 (2000)
- Utsumi R.: Bacterial signal transduction networks via connectors and development of the inhibitors as alternative antibiotics. Biosci. Biotechnol. Biochem. 81, 1663–1669 (2017)
- Van Acker H., Van Dijck P., Coenye T.: Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol. 22, 326–333 (2014)
- Walsh T.R., Stunt R.A., Nabi J.A., MacGowan A.P., Bennett P.M.: Distribution and expression of b-lactamase genes among Aeromonas spp. J. Antimicrob. Chemother. 40, 171–178 (1997)
- Wang D., Chen W., Chen H. i wsp.: Structural basis of Zn (II) induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa. PLoS Pathog. 13:e1006533. 10.1371/journal.ppat.1006533 (2017)
- Wang C., Chen W., Xia A., Zhang R., Huang Y., Yang S., Ni L., Jin F.: Carbon starvation induces the expression of PprB-regulated genes in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 85: e01705-19. doi: 10.1128/AEM.01705-19 (2019)
- Wang Y., Ha U., Zeng L., Jin S.: Regulation of membrane permeability by a Two-Component Regulatory System in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 41, 95–101 (2003)
- Wang D., Seeve C., Pierson L.S., Pierson E.A.: Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. BMC Genomics 14, 618. 10.1186/1471-2164-14-618 (2013)
- West A.H., Stock A.M.: Histidine kinases and response regulator proteins in two – component signaling systems. Trends Biochem. Sci. 26, 369–376 (2001)
- Winfield M.D., Groisman E.A.: Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc. Natl. Acad. Sci. USA, 101, 17162–17167 (2004)
- Winsor G.L., Griffiths E.J., Lo R., Dhillon B.K., Shay J.A., Brinkman F.S.L.: Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44, D646-D653. 10.1093/nar/gkv1227 (2016)
- Wirtz L., Eder M., Schipper K., Rohrer S., Jung H.: Transport and kinase activities of CbrA of Pseudomonas putida KT2440. Sci Rep. 10, 5400. doi: 10.1038/s41598-020-62337-9 (2020)
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization: Geneva, Switzerland, 2017; p. 12.
- Wosten M.M.S.M., Kox L.F.F., Chamnongpol S., Soncini F.C., Groisman E.A.: A Signal Transduction System that Responds to Extracellular Iron. Cell. 103: 113–125 (2000)
- Wuichet K., Cantwell B.J., Zhulin I.B.: Evolution and phyletic distribution of two-component signal transduction systems. Curr. Opin. Microbiol. 13, 219–25 10.1016/j.mib.2009.12.011 (2010)
- Yeung A.T.Y., Bains M., Hancock R.E.W.: The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J. Bacteriol. 193, 918–931 (2011)
- Zamorano L., Moya B., Juan C., Mulet X., Blazquez J., Oliver A.: The Pseudomonas aeruginosa CreBC two-component system plays a major role in the response to beta-lactams, fitness, biofilm growth, and global regulation. Antimicrob. Agents Chemother. 58, 5084–5095 (2014)
- Zhou D., Han Y., Qin L., Chen Z., Qiu J., Song Y., Li B., Wang J., Guo Z., Du Z., Wang X., Yang R.: Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis. sFEMS Microbiol. Lett. 250, 85–95 (2005)