References
- Alvarez E., DeDiego M.L., Nieto-Torres J.L., Jiménez-Guardeño J.M., Marcos-Villar L., Enjuanes L.: The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology, 402, 281–291 (2010)
- Angelini M.M., Akhlaghpour M., Neuman B.W., Buchmeier M.J.: Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio, 4, e00524–00513 (2013)
- Bhardwaj K., Liu, P., Leibowitz J.L., Kao C.C.: The coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein. J. Virol. 86, 4294–4304 (2012)
- Bosch B.J., Bartelink W., Rottier P.J.: Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J. Virol. 82, 8887–8890 (2008)
- Bosch B.J., van der Zee R., de Haan C.A., Rottier P.J.: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–8811 (2003)
- Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., Decroly E.: In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 6, e1000863 (2010)
- Chan J.F.-W., Kok K.-H., Zhu Z., Chu H., To K.K.-W., Yuan S., Yuen K.-Y.: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 9, 221–236 (2020)
- Chang C.-k., Huang T.-h. i wsp.: Modular organization of SARS coronavirus nucleocapsid protein. J. Biomed. Sci. 13, 59–72 (2006)
- Chatterjee A., Johnson M.A., Serrano P., Pedrini B., Joseph J.S., Neuman B.W., Saikatendu K., Buchmeier M.J., Kuhn P., Wüthrich K.: Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold. J. Virol. 83, 1823–1836 (2009)
- Chen Y., Guo D. i wsp.: Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2’-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog. 7, e1002294 (2011)
- Cornillez-Ty C.T., Liao L., Yates J.R., 3rd, Kuhn P., Buchmeier M.J.: Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J. Virol. 83, 10314–10318 (2009)
- Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E.: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176, 104742 (2020)
- Decroly E., Canard B. i wsp.: Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog. 7, e1002059 (2011)
- Devaraj S.G., Wang N., Chen Z., Tseng M., Barretto N., Lin R., Peters C.J., Tseng C.T., Baker S.C., Li K.: Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 282, 32208–32221 (2007)
- Dong X., Cao Y.Y., Lu X.X., Zhang J.J., Du H., Yan Y.Q., Akdis C.A., Gao Y.D.: Eleven faces of coronavirus disease 2019. Allergy, 75, 1699–1709 (2020)
- Egloff M.-P., Canard B. i wsp.: Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J. Virol. 80, 8493–8502 (2006)
- Egloff M.P., Ferron F., Campanacci V., Longhi S., Rancurel C., Dutartre H., Snijder E.J., Gorbalenya A.E., Cambillau C., Canard B.: The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc. Natl. Acad. Sci. USA, 101, 3792–3796 (2004)
- Escors D., Ortego J., Laude H., Enjuanes L.: The Membrane M Protein Carboxy Terminus Binds to Transmissible Gastroenteritis Coronavirus Core and Contributes to Core Stability. J. Virol. 75, 1312–24 (2001)
- Frieman M., Ratia K., Johnston R.E., Mesecar A.D., Baric R.S.: Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J. Virol. 83, 6689–6705 (2009)
- Gao Y., Rao, Z. i wsp.: Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368, 779–782 (2020)
- Gordon D.E., Krogan N.J. i wsp.: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583, 459–468 (2020)
- Graham R.L., Sims A.C., Brockway S.M., Baric R.S., Denison M.R.: The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J. Virol. 79, 13399–13411 (2005)
- Gu J., Korteweg C.: Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol. 170, 1136–1147 (2007)
- Hoffmann M., Kleine-Weber H., Pöhlmann S.: A multibasic cleavage site in the spike protein of SARS-CoV-2 Is essential for infection of human lung cells. Mol. Cell. 78, 779–784.e775 (2020)
- Hoffmann M., Pöhlmann S. i wsp.: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271–280.e278 (2020)
- Huang C., Lokugamage K.G., Rozovics J.M., Narayanan K., Semler B.L., Makino S.: SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog. 7, e1002433 (2011)
- Huang C., Cao B. i wsp.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395, 497–506 (2020)
- Ivanov K.A., Thiel V., Dobbe J.C., van der Meer, Y., Snijder E.J., Ziebuhr J.: Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 78, 5619–5632 (2004)
- Kamitani W., Huang C., Narayanan K., Lokugamage K.G., Makino S.: A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat. Struct. Mol. Biol. 16, 1134–1140 (2009)
- Kamitani W., Narayanan K., Huang C., Lokugamage K., Ikegami T., Ito N., Kubo H., Makino S.: Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc. Natl. Acad. Sci. USA, 103, 12885–12890 (2006)
- Kang S., Chen S. i in.: Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin B. 10, 1228–1238 (2020)
- Khailany R.A., Safdar M., Ozaslan M.: Genomic characterization of a novel SARS-CoV-2. Gene Rep. 100682 (2020)
- Kim D., Lee J.Y., Yang J.S., Kim J.W., Kim V.N., Chang H.: The Architecture of SARS-CoV-2 Transcriptome. Cell, 181, 914–921. e910 (2020)
- Kirchdoerfer R.N., Ward A.B.: Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun. 10, 2342 (2019)
- Lan J., Wang X. i wsp.: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581, 215–220 (2020)
- Li M.-Y., Li L., Zhang Y., Wang X.-S.: Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 9, 45 (2020)
- Li Y., Zhou W., Yang L., You R.: Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res. 157, 104833–104833 (2020)
- Lindner H.A., Lytvyn V., Qi H., Lachance P., Ziomek E., Ménard R.: Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch. Biochem. Biophys. 466, 8–14 (2007)
- Luan J., Lu Y., Jin X., Zhang L.: Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem Biophys. Res. Commun. 526, 165–169 (2020)
- Lundin A., Trybala E. i wsp.: Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus. PLoS Pathog. 10, e1004166–e1004166 (2014)
- Ma Y., Wu L., Shaw N., Gao Y., Wang J., Sun Y., Lou Z., Yan L., Zhang R., Rao Z.: Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc. Natl. Acad. Sci. USA, 112, 9436–9441 (2015)
- Minakshi R., Padhan K., Rani M., Khan N., Ahmad F., Jameel S.: The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One, 4, e8342 (2009)
- Mortola E., Roy P.: Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 576, 174–178 (2004)
- Neuman B.W., Kuhn P. i wsp.: Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J. Virol. 82, 5279–5294 (2008)
- Neuman B.W., Buchmeier M.J. i wsp.: A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol. 174, 11–22 (2011)
- Nile S.H., Nile A., Qiu J., Li L., Jia X., Kai G.: COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 53, 66–70 (2020)
- Ou X., Qian Z. i wsp.: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620 (2020)
- Oudshoorn D., Rijs K., Limpens R., Groen K., Koster A.J., Snijder E.J., Kikkert M., Bárcena M.: Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3–4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication. mBio, 8 (2017)
- Park S.E.: Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr. 63, 119–124 (2020)
- Phan T.: Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 81, 104260 (2020)
- Qian Z., Dominguez S.R., Holmes K.V.: Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS One, 8, e76469 (2013)
- Raj V.S., Haagmans B.L. i wsp.: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 495, 251–254 (2013)
- Schoeman D., Fielding B.C.: Coronavirus envelope protein: current knowledge. Virol. J. 16, 69 (2019)
- Serrano P., Johnson M.A., Chatterjee A., Neuman B.W., Joseph J.S., Buchmeier M.J., Kuhn P., Wüthrich K.: Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3. J. Virol. 83, 12998–13008 (2009)
- Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F.: Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 117, 11727–11734 (2020)
- Shang J., Ye G., Shi K., Wan Y., Luo C., Aihara H., Geng Q., Auerbach A., Li F.: Structural basis of receptor recognition by SARS-CoV-2. Nature, 581, 221–224 (2020)
- Sigrist C.J., Bridge A., Le Mercier P.: A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res. 177, 104759 (2020)
- Simmons G., Gosalia D.N., Rennekamp A.J., Reeves J.D., Diamond S.L., Bates P.: Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 102, 11876–11881 (2005)
- Siu K.L., Kok K.H., Ng M.H., Poon V.K., Yuen K.Y., Zheng B.J., Jin D.Y.: Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J. Biol. Chem. 284, 16202–16209 (2009)
- Siu Y.L., Nal B. i wsp.: The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol. 82, 11318–11330 (2008)
- Snijder E.J., van der Meer, Y., Zevenhoven-Dobbe J., Onderwater J.J.M., van der Meulen J., Koerten H.K., Mommaas A.M.: Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex. J. Virol. 80, 5927–40 (2006)
- Srinivasan S., Cui H., Gao Z., Liu M., Lu S., Mkandawire W., Narykov O., Sun M., Korkin D.: Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses, 12, 360 (2020)
- Subissi L., Imbert I., Ferron F., Collet A., Coutard B., Decroly E., Canard B.: SARS-CoV ORF1b-encoded nonstructural proteins 12–16: replicative enzymes as antiviral targets. Antiviral Res. 101, 122–130 (2014)
- Tanaka T., Kamitani W., DeDiego M.L., Enjuanes L., Matsuura Y.: Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J. Virol. 86, 11128–11137 (2012)
- Tang T.-K., Wu M.P.J., Chen S.-T., Hou M.-H., Hong M.-H., Pan F.-M., Yu H.-M., Chen J.-H., Yao C.-W., Wang A.H.J.: Biochemical and immunological studies of nucleocapsid proteins of severe acute respiratory syndrome and 229E human coronaviruses. Proteomics, 5, 925–937 (2005)
- Tomar S., Johnston M.L., St John S.E., Osswald H.L., Nyalapatla P.R., Paul L.N., Ghosh A.K., Denison M.R., Mesecar A.D.: Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS. J. Biol. Chem. 290, 19403–19422 (2015)
- Tseng Y.T., Wang S.M., Huang K.J., Wang C.T.: SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production. J. Biomed. Sci. 21, 4 (2014)
- Vennema H., Godeke G.J., Rossen J.W., Voorhout W.F., Horzinek M.C., Opstelten D.J., Rottier P.J.: Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 15, 2020–2028 (1996)
- Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D.: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181, 281–292.e286 (2020)
- Wang C., Liu Z., Chen Z., Huang X., Xu M., He T., Zhang Z.: The establishment of reference sequence for SARS-CoV-2 and variation analysis. J. Med. Virol. 92, 667–674 (2020)
- Wang H., Yang P., Liu K., Guo F., Zhang Y., Zhang G., Jiang C.: SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 18, 290–301 (2008)
- Watanabe Y., Allen J.D., Wrapp D., McLellan J.S., Crispin M.: Site-specific glycan analysis of the SARS-CoV-2 spike. Science, eabb9983 (2020)
- Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S.: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367, 1260–1263 (2020)
- Xu Z., Wang F.S.: Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020)
- Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q.: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367, 1444–1448 (2020)
- Zeng W., Jin T. i wsp.: Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys. Res. Commun. 527, 618–623 (2020)
- Zhai Y., Sun F., Li X., Pang H., Xu X., Bartlam M., Rao Z.: Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat. Struct. Mol. Biol. 12, 980–986 (2005)
- Zhang L., Li L., Yan, L., Ming Z., Jia Z., Lou Z., Rao Z.: Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus. J. Virol. 92, e00893–18 (2018)