Have a personal or library account? Click to login
Clinically Used And Potential Antimycotics In The Context Of Therapy Of Dermatomycoses Cover

Clinically Used And Potential Antimycotics In The Context Of Therapy Of Dermatomycoses

Open Access
|Mar 2020

References

  1. Anaissie E.J., McGinnis M.R., Pfaller M.A.B.T.: Clinical Mycology. Elsevier, Edinburgh, 2009
  2. Arif T., Bhosale J.D., Kumar N., Mandal T.K., Bendre R.S., Lavekar G.S., Dabur R.: Natural products – antifungal agents derived from plants. J. Asian Nat. Prod. Res. 11, 621–638 (2009)
  3. Bakkali F., Averbeck S., Averbeck D., Idaomar M.: Biological effects of essential oils – A review. Food Chem. Toxicol. 46, 446–475 (2008)
  4. Beule K. De, Gestel J. Van: Pharmacology of itraconazole. Drugs 61 Suppl 1, 27–37 (2001)
  5. Bialy Z., Jurzysta M., Mella M., Tava A.: Triterpene saponins from aerial parts of Medicago arabica L. J. Agric. Food Chem. 52, 1095–1099 (2004)
  6. Bitencourt T.A., Komoto T.T., Massaroto B.G., Miranda C.E.S., Beleboni R.O., Marins M., Fachin A.L.: Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC Complement. Altern. Med. 13, 229 (2013)
  7. Blank A.F., Costa A.G., Arrigoni-Blank M.D.F., Cavalcanti S.C.H., Alves P.B., Innecco R., Ehlert P.A.D., Sousa I.F. De: Influence of season, harvest time and drying on Java citronella (Cymbopogon winterianus Jowitt) volatile oil. Brazilian J. Pharmacogn. 17, 557–564 (2007)
  8. Boeck P., Leal P.C., Yunes R.A., Filho V.C., Lopez S., Sortino M., Escalante A., Furlan R.L.E., Zacchino S.: Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Arch. Pharm. (Weinheim). 338, 87–95 (2005)
  9. Borris R.P.: Natural products research: perspectives from a major pharmaceutical company. J. Ethnopharmacol. 51, 29–38 (1996)
  10. Brown G.D., Denning D.W., Levitz S.M.: Tackling Human Fungal Infections. Science, 336, 647 (2012)
  11. Cafarchia C., Laurentis N. De, Milillo M.A., Losacco V., Puccini V.: Antifungal activity of essential oils from leaves and flowers of Inula viscosa (Asteraceae) by Apulian region. Parassitologia, 44, 153–156 (2002)
  12. Cannon R.D., Lamping E., Holmes A.R., Niimi K., Baret P.V, Keniya M.V, Tanabe K., Niimi M., Goffeau A., Monk B.C.: Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 22, 291–321 (2009)
  13. Cantelli B.A.M., Bitencourt T.A., Komoto T.T., Beleboni R.O., Marins M., Fachin A.L.: Caffeic acid and licochalcone A interfere with the glyoxylate cycle of Trichophyton rubrum. Biomed. Pharmacother. 96, 1389–1394 (2017)
  14. Chapman S.W., Sullivan D.C., Cleary J.D.: In search of the holy grail of antifungal therapy. Trans. Am. Clin. Climatol. Assoc. 119, 197–216 (2008)
  15. Cheah H.L., Lim V., Sandai D.: Inhibitors of the Glyoxylate Cycle Enzyme ICL1 in Candida albicans for Potential Use as Antifungal Agents. PLoS One, 9, e95951 (2014)
  16. Cho S.Y., Jun H. Jin, Lee J.H., Jia Y., Kim K.H., Lee S.J.: Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitin-dependent mechanisms. FEBS Lett. 585, 3289–3296 (2011)
  17. Conti B.J., Bufalo M.C., Golim M. de A., Bankova V., Sforcin J.M.: Cinnamic Acid is partially involved in propolis immunomodulatory action on human monocytes. Evid. Based. Complement. Alternat. Med. 2013, 109864 (2013)
  18. Cowen L.E.: The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6, 187–198 (2008)
  19. Danielewski M., Ksiądzyna D., Szeląg A.: Non-antibiotic use of antibiotics. Post. Mikrobiol. 57, 301–312 (2018)
  20. Denning D.W.: Echinocandins: a new class of antifungal. J. Antimicrob. Chemother. 49, 889–891 (2002)
  21. Donovick R., Gold W., Pagano J.F., Stout H.A.: Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot. Annu. 3, 579–86 (1956)
  22. Dworecka-Kaszak B., Dąbrowska I.: Dermatophytes: new taxonomy and differentiation methods. Review of current state of knowledge about mechanisms of pathogenesis and pathogen-host interaction. Med. Weter. 73, 613–617 (2017)
  23. Facchini P.J., Johnson A.G., Poupart J., Luca V. de: Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures. Plant Physiol. 111, 687–697 (1996)
  24. Fewell A.M., Roddick J.G.: Potato glycoalkaloid impairment of fungal development. Mycol. Res. 101, 597–603 (1997)
  25. Garvey E.P., Hoekstra W.J., Moore W.R., Schotzinger R.J., Long L., Ghannoum M.A.: VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model. Antimicrob. Agents Chemother. 59, 1992–1997 (2015)
  26. Ghannoum M.A., Rice L.B.: Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12, 501–517 (1999)
  27. Gnat S., Łagowski D., Nowakiewicz A., Trościańczyk A., Zięba P.: Infection of Trichophyton verrucosum in cattle breeders, Poland: A 40-year retrospective study on the genomic variability of strains. Mycoses, 61, 681–690 (2018)
  28. Gnat S., Łagowski D., Nowakiewicz A., Zięba P.: Phenotypic characterization of enzymatic activity of clinical dermatophyte isolates from animals with and without skin lesions and humans. J. Appl. Microbiol. 125, 700–709 (2018)
  29. Gnat S., Łagowski D., Nowakiewicz A., Zięba P.: The host range of dermatophytes, it is at all possible? Phenotypic evaluation of the keratinolytic activity of Trichophyton verrucosum clinical isolates. Mycoses, 62, 274–283 (2019)
  30. Gnat S., Łagowski D., Nowakiewicz A., Zięba P.: Tinea corporis by Microsporum canis in mycological laboratory staff: Unexpected results of epidemiological investigation. Mycoses, 61, 945–953 (2018)
  31. Gnat S., Nowakiewicz A., Łagowski D., Trościańczyk A., Zięba P.: Multiple-strain Trichophyton mentagrophytes infection in a silver fox (Vulpes vulpes) from a breeding farm. Med. Mycol. 57, 171–180 (2019)
  32. Gnat S., Nowakiewicz A., Łagowski D., Zięba P.: Host- and pathogen-dependent susceptibility and predisposition to dermatophytosis. J. Med. Microbiol. 68, 823–836 (2019)
  33. Gnat S., Nowakiewicz A., Zięba P.: Taxonomy of dermatophytes – the classification systems may change but the identification problems remain the same. Post. Mikrobiol. 58, 49–58 (2019)
  34. Gull K., Trinci A.P.: Griseofulvin inhibits fungal mitosis. Nature, 244, 292–294 (1973)
  35. Hau C.S., Tada Y., Kanda N., Watanabe S.: Immunoresponses in dermatomycoses. J. Dermatol. 42, 236–244 (2015)
  36. Havlickova B., Czaika V.A., Friedrich M.: Epidemiological trends in skin mycoses worldwide. Mycoses, 51, 2–15 (2008)
  37. Hopkins J.G., Hillegas A.B.: Dermatophytosis at an infantry post; incidence and characteristics of infections by three species of fungi. J. Invest. Dermatol. 8, 291–316 (1947)
  38. Houghton P., Patel N., Jurzysta M., Biely Z., Cheung C.: Antidermatophyte activity of medicago extracts and contained saponins and their structure-activity relationships. Phytother. Res. 20, 1061–1066 (2006)
  39. Hsu C.C., Lai W.L., Chuang K.C., Lee M.H., Tsai Y.C.: The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Med. Mycol. 51, 473–482 (2013)
  40. Hube B., Hay R., Brasch J., Veraldi S., Schaller M.: Dermatomycoses and inflammation: The adaptive balance between growth, damage, and survival. J. Mycol. Med. 25, e44–58 (2015)
  41. Jerez Puebla L.E.: Fungal Infections in Immunosuppressed Patients. w: Immunodeficiency. red.: InTech, 2012
  42. Kanafani Z.A., Perfect J.R.: Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46, 120–128 (2008)
  43. Kerkenaar A.: Inhibition of the sterol Δ14-reductase and Δ8→Δ7-isomerase in fungi. Biochem. Soc. Trans. 18, 59 LP – 61 (1990)
  44. Keukens E.A., Vrije T. de, Boom C. van den, Waard P. de, Plasman H.H., Thiel F., Chupin V., Jongen W.M., Kruijff B. de: Molecular basis of glycoalkaloid induced membrane disruption. Biochim. Biophys. Acta 1240, 216–228 (1995)
  45. Khan A., Ahmad A., Manzoor N., Khan L.A.: Antifungal activities of Ocimum sanctum essential oil and its lead molecules. Nat. Prod. Commun. 5, 345–349 (2010)
  46. Klein G., Ruben C., Upmann M.: Antimicrobial activity of essential oil components against potential food spoilage microorganisms. Curr. Microbiol. 67, 200–208 (2013)
  47. Komoto T.T., Silva G., Bitencourt T., Cestari B.A., Marins M., Fachin A.L.: Evaluation of antifungal and cytotoxic activity of trans-Chalcone and α-Solanine. BMC Proc. 8, P36–P36 (2014)
  48. Koselny K., Green J., DiDone L., Halterman J.P., Fothergill A.W., Wiederhold N.P., Patterson T.F., Cushion M.T., Rappelye C., Wellington M., Krysan D.J.: The celecoxib derivative ar-12 has broad-spectrum antifungal activity in vitro and improves the activity of fluconazole in a murine model of Cryptococcosis. Antimicrob. Agents Chemother. 60, 7115–7127 (2016)
  49. Krysan D.J.: Toward improved anti-cryptococcal drugs: Novel molecules and repurposed drugs. Fungal Genet. Biol. 78, 93–98 (2015)
  50. Kushwaha A.S., Sharma P., Shivakumar H.N., Rappleye C., Zukiwski A., Proniuk S., Murthy S.N.: Trans-ungual Delivery of AR-12, a Novel Antifungal Drug. AAPS PharmSciTech 18, 2702–2705 (2017)
  51. Lamb J.H., Rebell G., Jones P.E., Morgan R.J., Knox J.M.: Combined therapy in histoplasmosis and coccidioidomycosis: Methyltestosterone and Meth-Dia-Mer-Sulfonamides. JAMA Dermatology 70, 695–712 (1954)
  52. Lee W., Lee D.G.: An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans. IUBMB Life 66, 780–785 (2014)
  53. Leem S.H., Park J.E., Kim I.S., Chae J.Y., Sugino A., Sunwoo Y.: The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol. Cells, 15, 55–61 (2003)
  54. Lemke A., Kiderlen A.F., Kayser O.: Amphotericin B. Appl. Microbiol. Biotechnol. 68, 151–162 (2005)
  55. Lewis R.E.: Current concepts in antifungal pharmacology. Mayo Clin. Proc. 86, 805–817 (2011)
  56. Linck V.M., Silva A.L. da, Figueiro M., Caramao E.B., Moreno P.R.H., Elisabetsky E.: Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice. Phytomedicine, 17, 679–683 (2010)
  57. Liu H., Li J., Zhao W., Bao L., Song X., Xia Y., Wang X., Zhang C., Wang X., Yao X., Li M.: Fatty acid synthase inhibitors from Geum japonicum Thunb. var. chinense. Chem. Biodivers. 6, 402–410 (2009)
  58. Łagowski D., Gnat S., Nowakiewicz A., Osińska M., Trościańczyk A., Zięba P.: In search of the source of dermatophytosis: Epidemiological analysis of Trichophyton verrucosum infection in llamas and the breeder (case report). Zoonoses Public Health, 66, 982–989 (2019)
  59. Łagowski D., Gnat S., Nowakiewicz A., Osińska M., Zięba P.: The prevalence of symptomatic dermatophytoses in dogs and cats and the pathomechanism of dermatophyte infections. Post. Mikrobiol. 58, 165–176 (2019)
  60. Macura A.B., Pawlik B.: Zarys mikologii lekarskiej. [w:] Zarys mikologii lekarskiej. red.: E. Baran. Volumed, Wrocław 1998, 648
  61. Martinez-Rossi N.M., Peres N.T.A., Rossi A.: Pathogenesis of dermatophytosis: sensing the host tissue. Mycopathologia, 182, 215–227 (2017)
  62. Martinez-Rossi N.M., Bitencourt T.A., Peres N.T.A., Lang E.A.S., Gomes E. V, Quaresemin N.R., Martins M.P., Lopes L., Rossi A.: Dermatophyte resistance to antifungal drugs: mechanisms and prospectus. Front. Microbiol. 9, 1108 (2018)
  63. Martinez-Rossi N.M., Peres N.T.A., Rossi A.: Antifungal resistance mechanisms in dermatophytes. Mycopathologia, 166, 369–383 (2008)
  64. McCarthy M.W., Kontoyiannis D.P., Cornely O.A., Perfect J.R., Walsh T.J.: Novel agents and drug targets to meet the challenges of resistant fungi. J. Infect. Dis. 216, S474–S483 (2017)
  65. Medeiros M.R.F., Prado L.A. de M., Fernandes V.C., Figueiredo S.S., Coppede J., Martins J., Fiori G.M.L., Martinez-Rossi N.M., Beleboni R.O., Contini S.H.T., Pereira P.S., Fachin A.L.: Antimicrobial activities of indole alkaloids from Tabernaemontana catharinensis. Nat. Prod. Commun. 6, 193–196 (2011)
  66. Mshvildadze V., Favel A., Delmas F., Elias R., Faure R., Decanosidze G., Kemertelidze E., Balansard G.: Antifungal and antiprotozoal activities of saponins from Hedera colchica. Pharmazie, 55, 325–326 (2000)
  67. Cardoso N.N.R., Alviano C. S., Blank A., Teresa V. Romanos M., Fonseca B., Rozental S., Rodrigues I., Alviano D.: Synergism effect of the essential oil from Ocimum basilicum var. maria bonita and its major components with fluconazole and its influence on ergosterol biosynthesis. Evidence-Based Complement. Altern. Med. 2016, 1–12 (2016)
  68. Nakagawa H., Nishihara M., Nakamura T.: Kerion and tinea capitis. IDCases 14, e00418–e00418 (2018)
  69. Narender T., Papi Reddy K.: A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate. Tetrahedron Lett. 48, 3177–3180 (2007)
  70. Negri M., Salci T.P., Shinobu-Mesquita C.S., Capoci I.R.G., Svidzinski T.I.E., Kioshima E.S.: Early state research on antifungal natural products. Molecules, 19, 2925–2956 (2014)
  71. Nowakowska Z.: A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 42, 125–137 (2007)
  72. Odds F., Brown A., Gow N.: Antifungal agents: Mechanisms of action. Trends Microbiol. 11, 272–279 (2003)
  73. Oliveira Lima M.I. de, Araujo de Medeiros A.C., Souza Silva K.V, Cardoso G.N., Oliveira Lima E. de, Oliveira Pereira F. de: Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 27, 195–202 (2017)
  74. Oliveira Pereira F. de, Alves Wanderley P., Cavalcanti Viana F.A., Baltazar de Lima R., Barbosa de Sousa F., Oliveira Lima E. de: Growth inhibition and morphological alterations of Trichophyton rubrum induced by essential oil from Cymbopogon Winterianus Jowitt Ex Bor. Braz. J. Microbiol. 42, 233–242 (2011)
  75. Pandey A., Rai M.: Antimycotic potential in some naturally occurring essential oils. w: Plant-derived antimycotics: Current trends and future prospects. red.: M. K. Rai, D. Mares. Haworth Press, London 2003, s. 344–345
  76. Peana A.T., Marzocco S., Popolo A., Pinto A.: (–)-Linalool inhibits in vitro NO formation: Probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci. 78, 719–723 (2006)
  77. Pianalto K.M., Alspaugh J.A.: New horizons in antifungal therapy. J. Fungi 2, 26 (2016)
  78. Pinto C.L., Uchoa D.E.D.A., Silveira E.R., Deusdênia O., Pessoa L.: Glicoalcaloides antifúngicos, flavonoides e outros constituintes químicos de Solanum asperum. Quim. Nov. Fac. Ciências da Saúde, Univ. Brasília 34, 284–288 (2011)
  79. Portillo A., Vila R., Freixa B., Adzet T., Canigueral S.: Antifungal activity of Paraguayan plants used in traditional medicine. J. Ethnopharmacol. 76, 93–98 (2001)
  80. Prus A.: Pharmacological activities of saponins. Postępy Fitoter. 200–204 (2003)
  81. Roemer T., Krysan D.J.: Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med. 4, (2014)
  82. Ryder N.S., Mieth H.: Allylamine antifungal drugs. Curr. Top. Med. Mycol. 4, 158–188 (1992)
  83. Safdar A., Bannister T.W., Safdar Z.: The predictors of outcome in immunocompetent patients with hematogenous candidasis. Int. J. Infect. Dis. 8, 180–186 (2004)
  84. Schell W.A., Jones A.M., Borroto-Esoda K., Alexander B.D.: Antifungal activity of scy-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptible Candida species. Antimicrob. Agents Chemother. 61, (2017)
  85. Sousa D.P. de, Nobrega F.F.F., Santos C.C.M.P., Almeida R.N. de: Anticonvulsant activity of the linalool enantiomers and racemate: investigation of chiral influence. Nat. Prod. Commun. 5, 1847–1851 (2010)
  86. Stefanowicz-Hajduk J., Ochocka R.: Steroidal saponins – occurrence, characteristic and application in therapeutics. Postępy Fitoter. 36–40 (2006)
  87. Svetaz L., Aguero M.B., Alvarez S., Luna L., Feresin G., Derita M., Tapia A., Zacchino S.: Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action. Planta Med. 73, 1074–1080 (2007)
  88. Vandeputte P., Ferrari S., Coste A.: Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. 2012, 713687 (2012)
  89. Waldorf A.R., Polak A.: Mechanisms of action of 5-fluorocytosine. Antimicrob. Agents Chemother. 23, 79–85 (1983)
  90. Wieder L.M.: Fungistatic and fungicidal effects of two wood-preserving chemicals on human dermatophytes: ortho (2 chlorophenyl) phenol sodium and tetrachlorphenol sodium. JAMA Dermatology 31, 644–657 (1935)
  91. Yun J., Lee H., Ko H.J., Woo E.R., Lee D.G.: Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochim. Biophys. Acta – Biomembr. 1848, 695–701 (2015)
DOI: https://doi.org/10.21307/PM-2020.59.1.006 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 63 - 74
Submitted on: Sep 1, 2019
Accepted on: Dec 1, 2019
Published on: Mar 23, 2020
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Sebastian Gnat, Dominik Łagowski, Aneta Nowakiewicz, Mariusz Dyląg, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.