Have a personal or library account? Click to login
Endophytic Bacteria In The Phytodegradation Of Persistent Organic Pollutants Cover

Endophytic Bacteria In The Phytodegradation Of Persistent Organic Pollutants

Open Access
|Jun 2019

References

  1. Afzal M., Khan Q.M., Sessitsch A.: Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere, 117, 232–242 (2014)
  2. Afzal M., Shabir G., Tahseen R., Ejazul I., Iqbal S., Khan Q.M.: Endophytic Burkholderia sp. strain PsJN improves plant growth and phytoremediation of soil irrigated with textile effluent. Clean Soil Air Water, 42, 1304–1310 (2014)
  3. Andreolli M., Lampis S., Poli M., Gullner G., Biró B., Vallini G.: Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere, 92, 688–694 (2013)
  4. Andria V., Reichenauer T.G., Sessitsch A.: Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ. Pollut. 157, 3347–3350 (2009)
  5. Arslan M., Imran A., Khan Q.M., Afzal M.: Plant-bacteria partnerships for the remediation of persistent organic pollutants. Environ. Sci. Pollut. Res. 1–15 (2015)
  6. Barac T., Taghavi S., Borremans B., Provoost A., Oeyen L., Colpaert J.V., Vangronsveld J., van der Lelie D.: Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22, 583–588 (2004)
  7. Bisht S., Pandey P., Kaur G., Aggarwal H., Sood A., Sharma S., Kumar V., Bisht N.S.: Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur. J. Soil. Biol. 60, 67–76 (2014)
  8. Chen P., Pickard M., Gray M.: Surfactant inhibition of bacterial growth on solid anthracene. Biodegradation, 11, 341–347 (2000)
  9. Dashti N., Khanafer M., El-Nemr I., Sorkhoh N., Ali N., Radwan S.: The potential of oil utilizing bacterial consortia associated with legume root nodules for cleaning oily soils. Chemosphere, 74, 1354–1359 (2009)
  10. Doty S.L.: Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol. 179, 318–333 (2008)
  11. Feng F., Ge J., Li Y., Cheng J., Zhong J., Yu X.: Isolation, colonization, and chlorpyrifos degradation mediation of the endophytic bacterium Sphingomonas strain HJY in chinese chives (Allium tuberosum). J. Agric. Food Chem. 65, 1131–1138 (2017)
  12. Feng N.X., Yu J., Zhao H.M., Cheng Y.T., Mo C.H., Cai Q.Y., Li Y.W., Li H., Wong M.H.: Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. Sci. Total Environ. 583, 352–368 (2017)
  13. Ferreira A., Quecine M.C., Lacava P.T., Oda S., Arau W.L.: Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol. Lett. 287, 8–14 (2008).
  14. Gałązka A.: Zanieczyszczenia gleb substancjami ropopochodnymi z uwzględnieniem biologicznych metod ich uzdatniania. Kosmos, 64, 146–154 (2015)
  15. Germaine K.J., Keogh E., Ryan D., Dowling D.N.: Bacterial endophyte mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol. Lett. 296, 226–234 (2009)
  16. Germaine K.J., Liu X., Cabellos G.G., Hogan J.P., Ryan D., Dowling D.N.: Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol. Ecol. 57, 302–310 (2006)
  17. Glick B.R.: Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169, 30–39 (2014)
  18. Hardoim P.R., van Overbeek L.S., Elsas J.D.: Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16, 463–471 (2008)
  19. Ho Y.N., Hsieh J.L., Huang C.C.: Construction of a plantmicrobe phytoremediation system: combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresource Technol. 145, 43–47 (2013)
  20. Ho Y.N., Mathew D.C., Hsiao S.C., Shih C.H., Chien M.F., Chiang H.M., Huang C.C.: Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J. Hazard. Mater. 219–220, 43–49 (2012)
  21. Ijaz A., Imran A., Anwar ul Haq M., Khan Q., Afzal M.: Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil, 392, 1–17 (2015)
  22. Iqbal A., Arshad M., Hashmi I., Karthikevan R., Gentry T.J., Schwab A.P.: Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa. Environ. Technol. 13, 1–10 (2017)
  23. Jin D., Jiang X., Ou Z.: Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene. J. Hazard. Mater. 144, 215–221 (2007)
  24. Johnston-Monje D., Raizada, M. N.: Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6, e20396 (2011)
  25. Kang J.W., Khan Z., Doty S.L.: Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl. Environ. Microbiol. 78, 3504–3507 (2012)
  26. Karnwal.: Use of Bio-Chemical Surfactant Producing Endophytic Bacteria Isolated from Rice Root for Heavy Metal Bioremediation. Pertanika J. Trop. Agric. Sci. 41, 699–714 (2018)
  27. Khan S., Afzal M., Iqbal S., Khan Q.M.: Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90, 1317–1332 (2013)
  28. Khan Z., Roman D., Kintz T., delas Alas M., Yap R., Doty S.: Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ. Sci. Technol. 48, 12221–12228 (2014)
  29. Kukla M., Płociniczak T., Piotrowska-Seget Z.: Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere, 117, 40–46 (2014)
  30. Li H.Y., Wei D.Q., Shen M., Zhou Z.P.: Endophytes and their role in phytoremediation. Fungal Divers. 54, 11–18 (2012)
  31. Li J.L., Chen B.H.: Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials, 2, 76–94 (2009)
  32. Lima J.M.S., Pereira J.O., Batista I.H., Pereira Junior R.C., Barroso H. dos S., Costa Neto P. de Q., Jackisch-Matsuura A.B., França S de C, Azevedo J.L.: Biosurfactants produced by Microbacterium sp. isolated from aquatic macrophytes in hydrocarbon-contaminated area in the Rio Negro, Manaus, Amazonas. Acta Sci. Biol. Sci. 39, 13–20 (2017)
  33. Liu J., Liu S., Sun K., Sheng Y., Gu Y., Gao Y.: Colonization on root surface by a phenanthrene degrading endophytic bacterium and its application for reducing plant phenanthrene contamination. PLoS ONE, 9, e108249 (2014)
  34. Liu X., Germaine K.J., Ryan D., Dowling D.N.: Whole-cell fluorescent biosensors for bioavailability and biodegradation of polychlorinated biphenyls. Sensors, 10, 1377–1398 (2010)
  35. Łuksa A., Mendrycka M., Stawarz M.: Bioremediacja gleb zaolejonych z wykorzystaniem sorbentów. Nafta-Gaz, 66, 810–818 (2010)
  36. Marecik R., Króliczak P., Cyplik P.: Fitoremediacja – alternatywa dla tradycyjnych metod oczyszczania środowiska. Biotechnologia, 74, 88–97 (2006)
  37. McGuinness M., Dowling D.: Plant-associated bacterial degradation of toxic organic compounds in soil. Int. J. Environ. Res. Public Health, 6, 2226–2247 (2009)
  38. McGuinness M.C., Mazurkiewicz V., Brennan E., Dowling D.N., Dechlorination of pesticides by a specific bacterial glutathione S-transferase, BphKLB400: Potential for bioremediation. Eng. Life Sci. 7, 611–615 (2007)
  39. Mercado-Blanco J., Lugtenberg B.J.J.: Biotechnological Applications of Bacterial Endophytes. Current Biotechnology, 3, 60–75 (2014)
  40. Michałowicz J., Duda W.: Phenols-sources and toxicity. Pol. J. Environ. Stud. 16, 347–362 (2007)
  41. Mitter B., Petric A., Shin M.W., Chain P.S., Hauberg-Lotte L., Reinhold-Hurek B., Nowak J., Sessitsch A.: Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci. 4, 120 (2013)
  42. Mohan P.K., Nakhla G., Yanful E.K.: Biokinetics of biodegradation of surfatants under aerobic, anoxic and anaerobic conditions. Water Res. 40, 533–540 (2006)
  43. Moore F.P., Barac T., Borremans B., Oeyen L., Vangronsveld J., van der Lelie D., Campbell C.D., Moore E.R.B.: Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst. Appl. Microbiol. 29, 539–556 (2006)
  44. Nath, D., Haque, A., Asraful, S., Dae, H., Keun, M.: Ecotoxicology and Environmental Safety Cloning and expression of ophB gene encoding organophosphorus hydrolase from endophytic Pseudomonas sp. BF1-3 degrades organophosphorus pesticide chlorpyrifos. Ecotoxicol. Environ. Saf. 108, 135–141 (2014)
  45. Oliveira V., Gomes N.C., Almeida A., Silva A.M., Silva H., Cunha A.: Microbe-assisted phytoremediation of hydrocarbons in estuarine environments. Microb. Ecol. 69, 1–12 (2015)
  46. Ongena M., Jacques P.: Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16, 115–125 (2008)
  47. Pacwa-Plociniczak M., Plaza G.A., Piotrowska-Seget Z., Cameotra S.S.: Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12, 633–654 (2011)
  48. Pathak K.V., Keharia H.: Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR). Biotech. 4, 41–48 (2014)
  49. Patrao S., Acharya A., Suvarna N., Sequeira M.: Degradation of anionic surfactants by Bacillus subtilis and Bacillus cereus. Pharm Biol Sci. 3, 42–45 (2012)
  50. Pawlik M., Piotrowska-Seget Z.: Endophytic bacteria associated with Hieracium piloselloides : Their potential for hydrocarbonutilizing and plant growth-promotion. J. Toxicol. Environ. Heal. Part A. 78, 860–870 (2015)
  51. Pawlik M., Cania B., Thijs S., Vangronsveld J., Piotrowska-Seget Z.: Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site. Environ. Sci. Pollut. Res. DOI 10.1007/s11356-017-9496-1 (2017)
  52. Panz K, Miksch K.: Phytoremediation of explosives (TNT, RDX, HMX) by wildtype and transgenic plants. J. Environ. Manage. 113, 85–92 (2012)
  53. Peng A., Liu J., Gao Y., Chen Z.: Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons. PLoS ONE, 8, e83054 (2013)
  54. Phillips L.A., Germida J.J., Farrell R.E., Greer Ch.W.: Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol. Biochem. 40, 3054–3064 (2008)
  55. Pilon-Smits E.: Phytoremediation. Ann. Rev. Plant Biol. 56, 15–39 (2005)
  56. Pisarska K., Pietr S.J.: Bakterie endofityczne – ich pochodzenie i interakcje z roślinami. Post. Mikrobiol. 53, 141–151 (2014)
  57. Raaijmakers J. M., De Bruijn I., Nybroe O., Ongena M.: Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol. Rev. 34, 1037–1062 (2010)
  58. Rebello S., Asok A.K., Mundayoor S., Jisha M.S.: Surfactants: Toxicity, remediation and green surfactants. Environ. Chem. Lett. 12, 275–287 (2014)
  59. Rosenblueth M., Martínez-Romero E.: Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 19, 827–837 (2006)
  60. Ryan R., Germaine K., Franks A., Ryan D.J., Dowling D.N.: Bacterial endophyte: recent developments and applications. FEMS Microbiol. Lett. 278, 1–9 (2008)
  61. Sachdev D.P., Cameotra S.S.: Biosurfactants in agriculture. Appl. Microbiol. Biotechnol. 97, 1005–1016 (2013)
  62. Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda M.C., Glick B.R.: Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016)
  63. Siciliano S.D., Fortin N., Mihoc A., Wisse G., Labelle S., Beaumier D., Ouellette D., Roy R., Whyte L.G., Banks M.K., Schwab P., Lee K., Greer C.W.: Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol. 67, 2469–2475 (2001)
  64. Semrau J.D.: Bioremediation via methanotrphy: overview of recent findings and suggestions for future research. Front. Microbiol. 2, 209 (2011)
  65. Sheng X., Chen X., He L.: Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. Int. Biodeterior. Biodegrad. 62, 88–95 (2008)
  66. Sun K., Liu J., Gao Y., Jin L., Gu Y., Wang W. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci. Rep. 4, 5462 (2014)
  67. Stępniewska Z., Kuźniar A.: Endophytic microorganisms – promising applications in bioremediation of greenhouse gases. Appl. Microbiol. Biotechnol. 97, 9589–9596 (2013)
  68. Stępniewska Z., Goraj W., Kuźniar A.: Przemiany metanu w środowiskach torfowych. Forest Research Papers, 75, 101–110 (2014)
  69. Taghavi S., Barac T., Greenberg B., Borremans B., Vangronsveld J., van der Lelie D.: Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl. Environ. Microbiol. 71, 8500–8505 (2005)
  70. Taghavi S., Weyens N., Vangronsveld J., van der Lelie D.: Improved phytoremediation of organic contaminants through engineering of bacterial endophytes of trees (w) Endophytes of forest trees, red. Pirttilä, A.M, Frank A.C, Springer, Dordrecht, 2011, s. 205–216
  71. Thijs S., Van Dillewijn P., Sillen W., Truyens S., Holtappels M., D’Haen J., Carleer R., Weyens N., Ameloot M., Ramos J.L., Vangronsveld J.: Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil. 385, 15–36 (2014)
  72. Truu J., Truu M., Espenberg M., Nolvak H., Juhanson J.: Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol. J. 9, 85–92 (2015)
  73. Van Aken B., Peres C.M., Doty S.L., Yoon J.M., Schnoor J.L.: Methylobacterium populi sp. Nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoids x nigra DN34). Int. J. Syst. Evol. Microbiol. 54, 1191–1196 (2004)
  74. Wang Y., Li H., Zhao W., He X., Chen J., Geng X., Xiao M.: Induction of toluene degradation and growth promotion in corn and wheat by horizontal gene transfer within endophytic bacteria. Soil Biol. Biochem. 42, 1051–1057 (2010)
  75. Weyens N., van der Lelie D., Taghavi S., Vangronsveld J.: Phytoremediation: plant-endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 20, 248–254 (2009)
  76. Weyens N., van der Lelie D., Artois T.: Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ. Sci. Technol. 43, 9413–9418 (2009)
  77. Weyens N., Truyens S., Dupae J., Newman L., Taghavi S., van der Lelie D., Carleer R., Vangronsveld J.: Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ. Pollut. 158, 2915–2919 (2010)
  78. Weyens N., Croes S., Dupae J., Newman L., van der Lelie D., Carleer R., Vangronsveld J.: Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ. Pollut. 158, 2422–2427 (2010)
  79. Wu T., Xu J., Xie W., Yao Z., Yang H., Sun C., Li X.: Pseudomonas aeruginosa L10: A Hydrocarbon-Degrading, Biosurfactant-Producing, and Plant-Growth-Promoting Endophytic Bacterium Isolated From a Reed (Phragmites australis). Front. Microbiol. 9, 1087 (2018)
  80. Xu X., Sun J., Nie Y. Wu X.: Spirodela polyrhiza stimulates the growth of its endophytes but differentially increases their fenpropathrin-degradation capabilities. Chemosphere, 125, 33–40 (2015)
  81. Yousaf S., Afzal M., Anees M., Malik R.N., Campisano A.: Ecology and functional potential of endophytes in bioremediation: a molecular perspective (w) Advances in endophytic research, red. Verma V.C, Gange A.C, Springer, New Delhi, 2014, s. 301–320
  82. Yousaf S., Afzal M., Reichenauer T.G., Brady C.L., Sessitsch A.: Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ. Pollut. 159, 2675–2683 (2011)
  83. Zhang X., Liu X., Wang Q., Chen X., Li H., Wei J., Xu G.: Diesel degradation potential of endophytic bacteria isolated from Scirpus triqueter. Int. Biodeterior. Biodegrad. 87, 99–105 (2014)
  84. Zemleduch A., Tomaszewska B.: Mechanizmy, procesy i oddziaływania w fitooremediacji. Kosmos, 56, 393–407 (2007)
  85. Zhong Y., Luan T., Wang X., Lan C., Tam N. F. Y.: Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Appl. Microbiol. Biotechnol. 75, 175–186 (2007)
  86. Zhu X., Ni X., Waigi M.G., Liu J., Sun K., Gao Y.: Biodegradation of mixed PAHs by PAH-degrading endophytic bacteria. Int. J. Environ. Res. Public Health, 13, 805–818 (2016)
DOI: https://doi.org/10.21307/PM-2019.58.1.070 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 70 - 79
Submitted on: Sep 1, 2018
Accepted on: Nov 1, 2018
Published on: Jun 10, 2019
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Daria Chlebek, Katarzyna Hupert-Kocurek, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.