Have a personal or library account? Click to login
The Rhizosphere Microbiome And Its Beneficial Effects On Plants – Current Knowledge And Perspectives Cover

The Rhizosphere Microbiome And Its Beneficial Effects On Plants – Current Knowledge And Perspectives

Open Access
|Jun 2019

References

  1. Ahemad M., Kibret M.: Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. JKSUS. 26, 1–20 (2014)
  2. Ahmed E., Holmström S.J.: Siderophores in environmental research: roles and applications. Microb. Biotechnol. 7, 196–208 (2014)
  3. Alori E.T., Glick B.R., Babalola O.O.: Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. DOI:10.3389/fmicb.2017.00971 (2017)
  4. Bais H.P., Park S.W., Weir T.L., Callaway R.M., Vivanco J.M.: How plants communicate using the underground information superhighway. Trends Plant Sci. 9, 26–32 (2004)
  5. Baker K.F., Cook R.J.: Biological control of plant pathogens. San W.H. Freeman and Company, Francisco, 1974
  6. Bakker M.G., Manter D.K., Sheflin A.M., Weir T.L., Vivanco JM.: Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil. 360, 1–13 (2012)
  7. Barbeau K., Zhang G.P., Live D.H., Butler A.: Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J. Am. Chem. Soc. 124, 378–379 (2002)
  8. Barea J.M., Pozo M.J., Azcon R., Azcon-Aguilar C.: Microbial co-operation in the rhizosphere. J. Exp. Bot. 56, 1761–1778 (2005)
  9. Berendsen R.L., Pieterse C.M., Bakker P.A.: The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012)
  10. Bezemer T.M., van Dam N.M.: Linking above-ground and below ground interactions via induced plant defenses. Trends Ecol. Evol. 20, 617–624 (2005)
  11. Bhattacharyya P.N., Jha D.K.: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28, 1327–1350 (2012)
  12. Buscot F.: What are soils? (in) Microorganisms in soils: roles in genesis and functions, red. F. Buscot, S. Varma, Springer-Verlag, Heidelberg, 2005, p. 3–18
  13. Cecagno R., Fritsch T.E., Schrank I.S.: The Plant Growth-Promoting Bacteria Azospirillum amazonense: Genomic Versatility and Phytohormone Pathway. BioMed Research International, DOI.10.1155/2015/898592 (2015)
  14. Chatterjee S., Sau G.B., Sinha S., Mukherjee S.K.: Effect of co-inoculation of plant growth-promoting rhizobacteria on the growth of amaranth plants. Arch. Agron. Soil Sci. 57, 1–11 (2011)
  15. Compant S., Duffy B., Nowak J., Clément C., Barka E.A.: Use of plant growth – promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. App. Environ. Microb. 71, 4951–4959 (2005)
  16. Dąbrowska G., Zdziechowska E.: Rola bakterii ryzosferowych w stymulacji procesów wzrostu i rozwoju oraz ochronie roślin przed czynnikami środowiska. Prog. Plant Prot. 55, 498–506 (2015)
  17. Das N., Chandran P.: Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int. 11, 1–13 (2011)
  18. de Jesus Sousa J.A., Olivare F. L.: Plant growth promotion by Streptomycetes: ecophysiology, mechanisms and applications. Chem. Biol. Technol. Agric. DOI 10.1186/s40538-016-0073-5 (2016)
  19. Derylo M., Skorupska A.: Enhancement of symbiotic nitrogen fixation by vitaminsecreting fluorescent Pseudomonas. Plant Soil. 154, 211–217 (1993)
  20. Devi K.A., Pandey P., Sharma G.D.: Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI Journal of Biosciences, 23, 173–180 (2016)
  21. Dimitroglou A., Merrifield D.L., Carnevali O., Picchietti S., Avella M., Daniels C. Güroy D., Davies S.J.: Microbial manipulations to improve fish health and production – a Mediterranean perspective. Fish Shellfish Immunol. 30, 1–16 (2011)
  22. Dunne C., Moenne-Loccoz Y., de Bruijn F.J. O’Gara F.: Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology, 146, 2069–2078 (2000)
  23. Egamberdieva D., Wirth S.J., Alqarawi A.A., Abd-Allah E.F., Hashem A.: Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Front. Microbiol. DOI: 10.3389/fmicb.2017.02104 (2017)
  24. Fincheira P., Quiroz A.: Microbial volatiles as plant growth inducers. Microbiol. Res. 208, 63–75 (2018)
  25. Gamit D.A., Tank S.K.: Effect of siderophore producing microorganism on plant growth of Cajanus cajan (Pigeon pea). Int. J. Res. Pure. Appl. Microbiol. 4, 20–27 (2014)
  26. Gilbert J.A., Knight R. i wsp.: The Earth Microbiome Project: meeting report of the “1st EMP meeting on sample selection and acquisition” at Argonne National Laboratory October 6 2010. Stand Genomic Sci. 3, 249–253 (2010)
  27. Glick B.R.: Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169, 30–39 (2014)
  28. Gopalakrishnan S., Sathya A., Vijayabharathi R., Varshney R.K., Gowda C.L.L., Krishnamurthy L.: Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 5, 355–377 (2015)
  29. Hickford S.J.H., Küpper F.C., Zhang G., Carrano C.J., Blunt J.W., Butler A.: Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J. Nat. Prod. 67, 1897–1899 (2004)
  30. Holden N., Pritchard L. Toth I.: Colonization out with the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol. Rev. 33, 689–703 (2009)
  31. Hong J.W., Park J.Y., Gadd G.M.: Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J. Appl. Microbiol. 108, 2030–2040 (2010)
  32. Hossain M.M., Sultana F., Kubota M., Koyama H., Hyakumachi M.: The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol. 48, 1724–1736 (2007)
  33. Hossain M.M., Sultana F., Isla S.: Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance (in) Plant-Microbe Interactions in Agro-Ecological Perspectives, eds. D. Singh, H. Singh, R. Prabha, Springer, Singapore, 2017, p. 135–191
  34. Imperlini E., Bianco C., Lonardo E., Camerini S., Cermola M., Moschetti G., Defez R., Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and symbiotic nitrogen fixation and stem dry weight production. Appl. Microbiol. Biotechnol. 83, 727–738 (2009)
  35. Ivanova E.G., Fedorov D.N., Doronina N.V., Trotsenko Y.A.: Production of vitamine B12 in aerobic methylotrophic bacteria. Microbiology, 75, 494–496 (2006)
  36. Jankowska M., Swędrzyńska D.: Analiza oddziaływań wybranych drobnoustrojów w środowisku glebowym. Kosmos, 1, 49–55 (2016)
  37. Kang J., Amoozegar A., Hesterberg D., Osmond D.L.: Phosphorus leaching in a sandy soil as affected by organic and incomposted cattle manure. Geoderma, 161, 194–201 (2011)
  38. Kent A.D., Triplett E.W.: Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu. Rev. Microbiol. 56, 211–236 (2002)
  39. Khalid A., Arshad M., Zahir Z.A.: Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96, 473–480 (2004)
  40. Khan A.A., Jilani G., Akhtar M.S., Naqvi S.M.S., Rasheed M.: Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1, 48–58 (2009)
  41. Khan M.S., Zaidi A., Ahemad M., Oves M., Wani P.A.: Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch. Agron. Soil Sci. 56, 73–98 (2010)
  42. Kloepper J.W., Zablotowick R.M., Tipping E.M., Lifshitz R.: Plant growth promotion mediated by bacterial rhizosphere colonizers (in) The rhizosphere and plant growth, eds. D.L. Keister, P.B. Cregan, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991, p. 315–326
  43. Kloepper J.W.: Plant growth-promoting rhizobacteria (other systems) (in) Azospirillum/plant associations, ed. Y. Okon, CRC Press, Boca Raton, 1994, p. 111–118
  44. Kloepper J.W., Schroth M.N.: Plant growth-promoting rhizobacteria on radishes (in) Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, vol. 2. Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, 1978 p. 879–882
  45. Korpi A., Järnberg J., Pasanen A.L.: Microbial volatile organic compounds. Crit. Rev. Toxicol. 39, 139–193 (2009)
  46. Lemfack M.C., Nickel J., Dunkel M., Preissner R., Piechulla B.: mVOC: adatabase of microbial volatiles. Nucleic Acid Res. 42, DOI: 10.1093/nar/gkt1250 (2014)
  47. Lindsay W.L., Vlek P.L.G., Chien S.H.: Phosphate minerals (in) Minerals in soil environment, 2nd edn, eds. J.B. Dixon, S.B. Weed, Soil Science Society of America, Madison, 1989 p. 1089–1130
  48. López-Bucio J., Cruz-Ramírez A., Pérez-Torres A., Ramírez-Pimentel J.G., Sánchez-Calderón L., Herrera-Estrella L.: Root architecture (in) Plant architecture and its manipulation, red. C. Turnbull, Wiley-Blackwell Annual Review Series, Oxford, 2005, p. 181–206
  49. Łyszcz M., Gałązka A.: Genetyczne metody różnicowania mikroorganizmów w systemie gleba-roślina. Post. Mikrobiol. 56, 341–352 (2017)
  50. Łyszcz M., Gałązka A.: Proces biologicznego wiązania azotu atmosferycznego (in) Studia i Raporty IUNG-PIB – Siedliskowe i agrotechniczne uwarunkowania produkcji roślinnej w Polsce, 49(3), ed. J. Podleśny, Dział Upowszechniania i Wydawnictw IUNG-PIB w Puławach, Puławy, 2016, p. 59–70
  51. Łyszcz M., Gałązka A.: Wybrane metody molekularne wykorzystywane w ocenie bioróżnorodności mikroorganizmów glebowych. Post. Mikrobiol. 55, 309–319 (2016)
  52. Łyszcz M., Głodowska M.: Bakterie endofityczne i ich wpływ na wzrost i rozwój roślin (in) Badania i Rozwój Młodych Naukowców w Polsce – Ochrona środowiska, eds. J. Nyćkowiak, J. Leśny, Młodzi Naukowcy, Poznań, 2017, p. 65–70
  53. Marek-Kozaczuk M., Skorupska A.: Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol. Fertil. Soils 33, 146–151 (2001)
  54. Mendes R., Garbeva P., Raaijmakers J.M.: The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev., 37(5), 634–663 (2013)
  55. Meyer J.M., Gruffaz C., Raharinosy V., Bezverbnaya I., Schäfer M., Budzikiewicz H.: Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals, 21(3), 259–271 (2008)
  56. Mitter B., Brader G., Afzal M., Compant S., Naveed M., Trognitz F., Sessitsch A.: Advances in elucidating beneficial interactions between plants, soil, and bacteria (in) Advances in agronomy Vol. 121, Academic Press, Cambridge, 2013 p. 381–445
  57. Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G.: Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655–670 (2003)
  58. Nautiyal C.S., Srivastava S., Chauhan P.S., Seem K., Mishra A., Sopory S.K.: Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Bioch. 66, 1–9 (2013)
  59. Neubauer U., Nowak B., Furrer G., Schulin R.: Heavy metal sorption on clay minerals affected by the siderophore desferroixamine B. Environ. Sci. Technol. 34, 2749–2755 (2000)
  60. Nihorimbere V., Ongena M., Smargiassi M., Thonart P.: Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnologie, Agronomie, Société et Environnement, 15, 327–337 (2011)
  61. Norrish K., Rosser H.: Mineral phosphate (in) Soils: an Australian viewpoint. Academic Press, Melbourne, CSIRO/London, UK, Australia, 1983, p. 335–361
  62. Orozco-Mosqueda M. & Valencia-Cantero E. et al.: Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant Soil. 362, 51–66 (2013)
  63. Ortíz-Castro R., Contreras-Cornejo H.A., Macías-Rodríguez L., López-Bucio J.: The role of microbial signals in plant growth and development. Plant Signal. Behav. 4, 701–712 (2009)
  64. Pangesti N., Pineda A., Pieterse C.M., Dicke M., Van Loon J.J.: Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Front. Plant Sci. DOI: 10.3389/fpls.2013.00414 (2013)
  65. Park Y.S., Dutta S., Ann M., Raaijmakers J.M., Park K.: Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun. 461, 361–365 (2015)
  66. Pospieszny H.: Systemiczna odporność nabyta (Systemic Acquired Resistance-SAR) w integrowanej ochronie roślin. Prog. Plant Protect. 56, 436–442 (2016)
  67. Preston G.M.: Plant perceptions of plant growth-promoting Pseudomonas. Philos. T. Roy. Soc. B. 359(1446), 907–918 (2004)
  68. Rajkumar M., Ae N., Prasad M.N.V., Freitas H.: Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28, 142–149 (2010)
  69. Raza W., Yousaf S., Rajer F.U.: Plant growth promoting activity of volatile organic compounds produced by biocontrol strains. Sci. Lett. 4, 40–43 (2016)
  70. Redecker D., Morton J.B., Bruns T.D.: Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol. Phylogenet. Evol. 14, 276–284 (2000)
  71. Reinhold-Hurek B., Hurek T.: Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14, 435–443 (2011)
  72. Ryu C., Farag M.A., Hu C., Reddy M.S., Kloepper J.W., Pare P.W.: Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134, 1017–26 (2004)
  73. Ryu C.-M., Farag M.A., Hu C.-H., Reddy M.S., Wei H.-X., Pare P.W., Kloepper J. W.: Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA, 100, 4927–4932 (2003)
  74. Schalk I.J., Hannauer M., Braud A.: Minireview new roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 13, 2844–2854 (2011)
  75. Schaller G.: Ethylene and the regulation of plant development. BMC Biol. DOI:10.1186/1741-7007-10-9 (2012)
  76. Schußler A., Schwarzott D., Walker C.: A new fungal phylum, the Glomeromycota, phylogeny and evolution. Mycol. Res. 105, 1413–1421 (2001)
  77. Shariatmadari Z., Riahi H., Seyed Hashtroudi M., Ghassempour A., Aghashariatmadary Z.: Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci. Plant Nutr. 59, 535–547 (2013)
  78. Sharma S.B., Sayyed R.Z., Trivedi M.H., Gobi T.A.: Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, DOI:10.1186/2193-1801-2-58 (2013)
  79. Shi T.-Q., Peng H., Zeng S.-Y., Ji R.-Y., Shi K., Huang H., Ji X.-J.: Microbial production of plant hormones: Opportunities and challenges. Bioengineered, 8, 124–128 (2017)
  80. Shoresh M., Harman G.E., Mastouri F.: Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 48, 21–43 (2010)
  81. Singh R.P., Jha P.N.: The PGPR Stenotrophomonas maltophilia SBP-9 Augments Resistance against Biotic and Abiotic Stress in Wheat Plants. Front. Microbiol. DOI:10.3389/fmicb.2017.01945 (2017)
  82. Sivasakthi S., Usharani G., Saranraj P.: Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agr. Res. 9, 1265–1277 (2014)
  83. Song G.C., Ryu C.M.: Two volatile organic compounds trigger plant selfdefense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci. 14, 9803–9019 (2013)
  84. Sorty A.M., Meena K.K., Choudhary K., Bitla U.M., Minhas P.S., Krishnani K.K.: Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl. Biochem. Biotechnol. 180, 872–882 (2016)
  85. Tahir H.A.S., Gu Q., Wu H., Niu Y., Huo R., Gao X.: Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. DOI: 10.1038/srep40481 (2017)
  86. Tahir H.A., Gu Q., Wu H., Raza W., Hanif A., Wu L., Colman W.M., Gao X.: Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front. Microbiol. DOI:10.3389/fmicb.2017.00171 (2017)
  87. Thimann K.V.: Fifty years of plant hormone research. Plant Physiol. 54, 450–453 (1974)
  88. Tilak K.V.B.R., Ranganayaki N., Manoharachari C.: Synergistic effects of plant growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur. J. Soil Sci. 57, 67–71 (2006)
  89. Tsavkelova E.A., Cherdyntseva T.A., Klimova S.Y., Shestakov A.I., Botina S.G., Netrusov A.I. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch. Microbiol. 188, 655–664 (2007)
  90. Turner T.R., James E.K., Poole P.S.: The plant microbiome. Genome Boil. DOI:10.1186/gb-2013-14-6-209 (2013)
  91. Tyler H.L. Triplett E.W.: Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu. Rev. Phytopathol. 46, 53–73 (2008)
  92. van de Mortel J.E., de Vos R.C., Dekkers E., Pineda A., Guillod L., Bouwmeester K., van Loon J. J.A., Dicke M., Raaijmakers J.M.: Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol. 160, 2173–2188 (2012)
  93. Van Loon L.C.: Plant responses to plant growth promoting bacteria. Eur. J. Plant Pathol. 119, 243–254 (2007)
  94. Verhagen B.W.M., Glazebrook J., Zhu T., Chang H.-S., van Loon L.C., Pieterse C.M.J., The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol. Plant Microbe Interact. 17, 895–908 (2004)
  95. Vorholt J.A.: Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012)
  96. Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G.: Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J. Appl. Microbiol. 111, 1065–1074 (2011)
  97. Welbaum G., Sturz A.V., Dong Z. Nowak J.: Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit. Rev. Plant Sci. 23, 175–193 (2004)
  98. Woźniak M., Gałązka A., Grządziel J., Głodowska M.: The identification and genetic diversity of endophytic bacteria isolated from selected crops. J. Agr. Sci. 1–10, DOI:10.1017/S0021859618000618 (2018)
  99. Zhu F., Qu L., Hong X., Sun X.: Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea of China. Evid. Based Complement. Alternat. Med. DOI:10.1155/2011/615032 (2011)
  100. Qi W., Zhao L.: Study of the siderophore producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. J. Basic. Microbiol. 53(4), 355–364 (2013)
  101. Zou C., Li Z., Yu D.: Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J. Microbiol. 48, 460–466 (2010)
DOI: https://doi.org/10.21307/PM-2019.58.1.059 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 59 - 69
Submitted on: Sep 1, 2018
Accepted on: Nov 1, 2018
Published on: Jun 10, 2019
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Małgorzata Woźniak, Anna Gałązka, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.