Have a personal or library account? Click to login
TYPE VB AND VI SECRETION SYSTEMS AS COMPETITION AGENTS OF GRAM-NEGATIVE BACTERIA Cover

TYPE VB AND VI SECRETION SYSTEMS AS COMPETITION AGENTS OF GRAM-NEGATIVE BACTERIA

Open Access
|Feb 2022

References

  1. Alcoforado Diniz J., Coulthurst S.J.: Intraspecies competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein. J. Bacteriol.197, 2350–2360 (2015)10.1128/JB.00199-15452418525939831
  2. Alcoforado Diniz J., Liu Y.C., Coulthurst S.J.: Molecular weaponry: Diverse effectors delivered by the Type VI secretion system. Cell. Microbiol,17, 1742–1751 (2015)10.1111/cmi.12532483237726432982
  3. Allsopp L.P., Wood T.E., Howard S.A., Maggiorelli F., Nolan L.M., Wettstadt S., Filloux A.: RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 114, 7707–7712 (2017)10.1073/pnas.1700286114553065828673999
  4. Alteri C.J., Mobley H.L.T. i wsp.: Multicellular bacteria deploy the type VI secretion system to preemptively strike neighboring cells. PLoS Pathogens, 9, e1003608 (2013)10.1371/journal.ppat.1003608376421324039579
  5. Alteri C.J., Himpsl S.D., Zhu K., Hershey H.L., Musili N., Miller J.E., Mobley H.L.T.: Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity. PLoS Pathogens, 13, e1006729 (2017)10.1371/journal.ppat.1006729571439129155899
  6. Anderson M.S., Garcia E.C., Cotter P.A.: The Burkholderia bcpA-IOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems. PLoS Genetics, 8, e1002877 (2012)10.1371/journal.pgen.1002877341546222912595
  7. Anderson M.S., Garcia E.C., Cotter P.A.: Kind discrimination and competitive exclusion mediated by contact-dependent growth inhibition systems shape biofilm community structure. PLoS Pathogens, 10, e1004076 (2014)10.1371/journal.ppat.1004076399072424743836
  8. Aoki S.K., Diner E.J., de Roodenbeke C.T., Burgess B.R., Poole S.J., Braaten B.A., Low D.A.: A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature, 468, 439–442 (2010)10.1038/nature09490305891121085179
  9. Aoki S.K., Low D.A. i wsp.: Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol. Microbiol.70, 323–340 (2008)
  10. Aoki S.K., Pamma R., Hernday A.D., Bickham J.E., Braaten B.A., Low D.A.: Contact-dependent inhibition of growth in Escherichia coli. Science, 309, 1245–1248 (2005)10.1126/science.111510916109881
  11. Aoki S.K., Poole S.J., Hayes C.S., Low D.A.: Toxin on a stick: modular CDI toxin delivery systems play roles in bacterial competition. Virulence, 2, 356–359 (2011)10.4161/viru.2.4.16463317367921705856
  12. Aoki S.K., Webb J.S., Braaten B.A., Low D.A.: Contact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli. J. Bacteriol.191,1777–1786 (2009)10.1128/JB.01437-08264837219124575
  13. Bandara H.M., Yau J.Y., Watt R.M., Jin L.J., Samaranayake L.P.: Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development. BMC Microbiol.10, DOI:10.1186/1471-2180-10-125 (2010)10.1186/1471-2180-10-125287454820416106
  14. Bandara H.M.H.N., Yau J.Y.Y., Watt R.M., Jin L.J., Samaranayake L.P.: Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J. Med. Microbiol.58, 1623–1631 (2009)10.1099/jmm.0.012989-019661208
  15. Basler M.: Type VI secretion system: secretion by a contractile nanomachine. Philos. Trans. R. Soc. Lond. B Biol. Sci.370, DOI:10.1098/rstb.2015.0021 (2005)10.1098/rstb.2015.0021463259826370934
  16. Batot G., Goulding C.W.: i wsp.: The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily. Nucleic Acids Res.45,5013–5025 (2017)
  17. Beck C.M., Diner E.J., Kim J.J., Low D.A., Hayes C.S.: The F pilus mediates a novel pathway of CDI toxin import. Mol. Microbiol.93, 276–290 (2014)10.1111/mmi.12658410718924889811
  18. Beck C.M., Morse R.P., Cunningham D.A., Iniguez A., Low D.A., Goulding C.W., Hayes C.S.: CdiA from Enterobacter cloacaedelivers a toxic ribosomal RNase into target bacteria. Structure,22, 707–718 (2015)10.1016/j.str.2014.02.012401618324657090
  19. Beck C.M., Willett J.L.E., Cunningham D.A., Kim J.J., Low D.A., Hayes C.S.: CdiA effectors from uropathogenic Escherichia coliuse heterotrimeric osmoporins as receptors to recognize target bacteria. PLoS Pathogens,12, e1005925 (2016)10.1371/journal.ppat.1005925505673427723824
  20. Bingle L.E., Bailey C.M., Pallen M.J.: Type VI secretion: a beginner’s guide. Curr. Opin. Microbiol.11, 3–8 (2008)10.1016/j.mib.2008.01.00618289922
  21. Blango M.G., Mulvey M.A.: Bacterial landlines: contact-dependent signaling in bacterial populations. Curr. Opin. Microbiol.12, 177–181 (2009)10.1016/j.mib.2009.01.011266872419246237
  22. Bondage D.D., Lin J.-S., Ma L.-S., Kuo C.-H., Lai E.-M.: VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc. Natl. Acad. Sci. USA, 113, E3931-40 (2016)10.1073/pnas.1600428113494147227313214
  23. Bröms J.E., Ishikawa T., Wai S.N., Sjöstedt A.: A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol.13:96, DOI:10.1186/1471-2180-13-96 (2013)10.1186/1471-2180-13-96365678523642157
  24. Brzozowska E., Bazan J., Gamian A.: Funkcje białek bakteriofagowych. Postepy Hig. Med. Dosw.65, 167–176 (2011)10.5604/17322693.93609021502693
  25. Cardarelli L., Saak C., Gibbs K.A.: Two proteins form a heteromeric bacterial self-recognition complex in which variable subdomains determine allele-restricted binding. mBio, 6, DOI:10.1128/mBio.00251-15 (2015)10.1128/mBio.00251-15447155926060269
  26. Carruthers M.D., Nicholson P.A., Tracy E.N., Munson R.S.: Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS ONE,8, e59388 (2013)10.1371/journal.pone.0059388360201423527179
  27. Chou S., Bui N.K., Russell A.B., Lexa K.W., Gardiner T.E., LeRoux M., Vollmer W., Mougous J.D.: Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system. Cell Rep.1, 656–664 (2012)10.1016/j.celrep.2012.05.016340138422813741
  28. Cianfanelli F.R., Alcoforado Diniz J., Guo M., De Cesare V., Trost M., Coulthurst S.J.: VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathogens, 12, e1005735 (2016)10.1371/journal.ppat.1005735492487627352036
  29. Coulthurst S.J.: The type VI secretion system – a widespread and versatile cell targeting system. Res. Microbiol.164, 640–654 (2013)10.1016/j.resmic.2013.03.01723542428
  30. Diner E.J., Beck C.M., Webb J.S., Low D.A., Hayes C.S.: Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). Genes Dev.26, 515–525 (2012)10.1101/gad.182345.111330598822333533
  31. Dong T.G., Ho B.T., Yoder-Himes D.R., Mekalanos J.J.: Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl. Acad. Sci. USA, 110, 2623–2628 (2013)10.1073/pnas.1222783110357494423362380
  32. English G., Trunk K., Rao V.A., Srikannathasan V., Hunter W.N., Coulthurst S.J.: New secreted toxins and immunity proteins encoded within the type VI secretion system gene cluster of Serratia marcescens. Mol. Microbiol.86, 921–936 (2012)10.1111/mmi.12028353378622957938
  33. Flaugnatti N., Journet L. i wsp.: A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol. Microbiol.99, 1099–1118 (2016)
  34. Foster K.R., Bell T.: Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol.22, 1845–1850 (2012)10.1016/j.cub.2012.08.00522959348
  35. Gallique M., Bouteiller M., Merieau A.: The type VI secretion system: A dynamic system for bacterial communication? Front. Microbiol.8, DOI:10.3389/fmicb.2017.01454 (2017)10.3389/fmicb.2017.01454553242928804481
  36. Gallique M., Decoin V., Barbey C., Rosay T., Feuilloley M.G.J., Orange N., Merieau A.: Contribution of the Pseudomonas fluorescens MFE01 type VI secretion system to biofilm formation. PLoS ONE,12, e0170770 (2017)10.1371/journal.pone.0170770525698928114423
  37. Garcia E.C., Anderson M.S., Hagar J.A., Cotter P.A.: Burkholderia BcpA mediates biofilm formation independently of interbacterial contact-dependent growth inhibition. Mol. Microbiol.89, 1213–1225 (2013)10.1111/mmi.12339378637023879629
  38. Garcia E.C., Perault A.I., Marlatt S.A., Cotter P.A.: Interbacterial signaling via Burkholderia contact-dependent growth inhibition system proteins. Proc. Natl. Acad. Sci. USA, 113, 8296–8301 (2016)10.1073/pnas.1606323113496117427335458
  39. Gerc A.J., Diepold A., Trunk K., Porter M., Rickman C., Armitage J.P., Stanley-Wall N.R., Coulthurst S.J.: Visualization of the Serratia type VI secretion system reveals unprovoked attacks and dynamic assembly. Cell Rep.12, 2131–2142 (2015)10.1016/j.celrep.2015.08.053459415926387948
  40. Green E.R., Mecsas J.: Bacterial secretion systems – an overview. Microbiol. Spectr.4, DOI:10.1128/microbiolspec (2016)10.1128/microbiolspec
  41. Hachani A., Allsopp L.P., Oduko Y., Filloux A.: The VgrG proteins are “la carte” delivery systems for bacterial type VI effectors. J. Biol. Chem.289, 17872–17884 (2014)10.1074/jbc.M114.563429406721824794869
  42. Hayes C.S., Koskiniemi S., Ruhe Z.C., Poole S.J., Low D.A.: Mechanisms and biological roles of contact-dependent growth inhibition systems. Cold Spring Harb. Perspect. Med.4, DOI: 10.1101/cshperspect.a010025 (2014)10.1101/cshperspect.a010025390409324492845
  43. Hibbing M.E., Fuqua C., Parsek M.R., Peterson S.B.: Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol.8, 15–25 (2010)10.1038/nrmicro2259287926219946288
  44. Jamet A., Jousset A.B., Euphrasie D., Mukorako P., Boucharlat A., Ducousso A., Charbit A., Nassif X.: A new family of secreted toxins in pathogenic Neisseria species. PLoS Pathogens, 11, e1004592 (2015)10.1371/journal.ppat.1004592428760925569427
  45. Jamet A., Nassif X.: Characterization of the Maf family of polymorphic toxins in pathogenic Neisseria species. Microb. Cell, 2, 88–90 (2015)
  46. Jamet A., Nassif X.: New players in the toxin field: polymorphic toxin systems in bacteria. mBio, 6, DOI:10.1128/mBio.00285-15 (2015)10.1128/mBio.00285-15443606225944858
  47. Jones A.M., Garza-Sánchez F., So J., Hayes C.S., Low D.A.: Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors. Proc. Natl. Acad. Sci. USA, 114, DOI:10.1073/pnas.1619273114 (2017)10.1073/pnas.1619273114534754028223500
  48. Jones C., Hachani A., Manoli E., Filloux A.: An rhs gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J. Bacteriol.196, 800–810 (2014)10.1128/JB.00863-13391117624317402
  49. Kapitein N., Mogk A.: Type VI secretion system helps find a niche. Cell Host Microbe, 16, DOI:10.1016/j.chom.2014.06.012 (2014)10.1016/j.chom.2014.06.01225011102
  50. Khajanchi B.K., Sha J., Kozlova E.V., Erova T.E., Suarez G., Sierra J.C., Popov V.L., Horneman A. J., Chopra A.K.: N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology, 155, 3518–3531 (2009)10.1099/mic.0.031575-0288813119729404
  51. Kirchberger P.C., Unterweger D., Provenzano D., Pukatzki S., Boucher Y.: Sequential displacement of type VI secretion system effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci. Rep.7, DOI:10.1038/srep45133 (2017)10.1038/srep45133536108028327641
  52. Konovalova A., Søgaard-Andersen L.: Close encounters: Contact-dependent interactions in bacteria. Mol. Microbiol.81, 297–301 (2011)10.1111/j.1365-2958.2011.07711.x21651624
  53. Koskiniemi S., Garza-Sánchez F., Edman N., Chaudhuri S., Poole S.J., Manoil C., Hayes C.S., Low D.A.: Genetic analysis of the CDI pathway from Burkholderia pseudomallei 1026b. PLoS ONE,10, e0120265 (2015)10.1371/journal.pone.0120265436466925786241
  54. Koskiniemi S., Lamoureux J.G., Nikolakakis K.C., t’Kint de Roodenbeke C., Kaplan M.D., Low D.A, Hayes C.S.: Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl. Acad. Sci. USA, 110, 7032–7037 (2013)10.1073/pnas.1300627110363778823572593
  55. Kube S., Wendler P.: Structural comparison of contractile nanomachines. AIMS Biophysics, 2, 88–115 (2015)10.3934/biophy.2015.2.88
  56. Kung V.L., Khare S., Stehlik C., Bacon E.M., Hughes A.J., Hauser A.R.: An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc. Natl. Acad. Sci. USA, 109, 1275–1280 (2012)10.1073/pnas.1109285109326832122232685
  57. Lazzaro M., Feldman M.F., Vescovi E.G.: A transcriptional regulatory mechanism finely tunes the firing of Type VI Secretion System in response to bacterial enemies. mBio, 8, DOI:10.1128/ mBio.00559-17 (2017)10.1128/mBio.00559-17556596128830939
  58. Leiman P.G., Basler M., Ramagopal U.A., Bonanno J.B., Sauder J.M., Pukatzki S., Burley S.K, Almo S.C., Mekalanos J.J.: Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl. Acad. Sci. USA, 106, 4154–4159 (2009)10.1073/pnas.0813360106265743519251641
  59. LeRoux M., Mougous J.D. i wsp.: Quantitative single-cell characterization of bacterial interactions. Proc. Natl. Acad. Sci. USA, 109: 19804–19809 (2012)10.1073/pnas.1213963109351172323150540
  60. Lesic B., Starkey M., He J., Hazan R., Rahme L.G.: Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology, 155, 2845–2855 (2009)10.1099/mic.0.029082-0288817519497948
  61. Li M., Le Trong I., Carl M.A., Larson E.T., Chou S., de Leon J.A., Dove S.L., Stenkamp R.E., Mougous J.D.: Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathogens, 8, e1002613 (2012)10.1371/journal.ppat.1002613332521322511866
  62. Liu L., Ye M., Li X., Li J., Deng Z., Yao Y.-F., Ou H.-Y.: Identification and characterization of an antibacterial Type VI Secretion System in the carbapenem-resistant strain Klebsiella pneumoniae HS11286. Front. Cellular Infect. Microbiol.7, DOI:10.3389/ fcimb.2017.00442 (2017)10.3389/fcimb.2017.00442564920529085808
  63. Lyons N.A., Kraigher B., Stefanic P., Mandic-Mulec I., Kolter R.: A combinatorial kin discrimination system in Bacillus subtilis. Curr. Biol.26, 733–742 (2016)10.1016/j.cub.2016.01.032480360626923784
  64. Ma J., Pan Z., Huang J., Sun M., Lu C., Yao H.: The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence, 8, DOI:10.1080/21505594.2017.1279374 (2017)10.1080/21505594.2017.1279374571135228060574
  65. Ma J., Sun M., Dong W., Pan Z., Lu C., Yao H.: PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environment. Microbiol.19, 345–360 (2017)10.1111/1462-2920.1362127871130
  66. Ma L.S., Hachani A., Lin J.S., Filloux A., Lai E.M.: Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe, 16, 94–104 (2014)10.1016/j.chom.2014.06.002409638324981331
  67. Ma L.S., Narberhaus F., Lai E.M.: IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J. Biol. Chem.287, 15610–15621 (2012)10.1074/jbc.M111.301630334614122393043
  68. Majerczyk C., Schneider E., Greenberg E.P.: Quorum sensing control of type VI secretion factors restricts the proliferation of quorum-sensing mutants. eLife, 5, DOI:10.7554/eLife.14712 (2016)10.7554/eLife.14712486853427183270
  69. McNally L., Bernardy E., Thomas J., Kalziqi A., Pentz J.T., Brown S., Hammer B., Yunker P.Y., Ratcliff W.: Killing by Type VI secretion drives clonal phase separation and the evolution of cooperation. Nat. Commun.8, DOI:10.1101/063487 (2017)10.1101/063487
  70. Melvin J.A., Gaston J.R., Phillips S.N., Springer M.J., Marshall C.W., Shanks R.M.Q., Bomberger M.: Pseudomonas aeruginosa contact-dependent growth inhibition plays dual role in host-pathogen interactions. mSphere, 2, e00336-17 (2017)10.1128/mSphere.00336-17568791729152577
  71. Mercy C., Ize B., Salcedo S.P., de Bentzmann S., Bigot S.: Functional characterization of Pseudomonas contact dependent growth inhibition (CDI) systems. PloS One, 11, e0147435 (2016)10.1371/journal.pone.0147435472596326808644
  72. Morse R.P., Nikolakakis K.C., Willett J.L.E., Gerrick E., Low D.A., Hayes C.S., Goulding C.W.: Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems. Proc. Natl. Acad. Sci. USA, 109, 21480–21485 (2012)10.1073/pnas.1216238110353562223236156
  73. Morse R.P., Willett J.L.E., Johnson P.M., Zheng M., Credali A., Iniguez A., Nowick J.S., Hayes C.S., Goulding C.W.: Diversification of β-augmentation interactions between CDI toxin/ immunity proteins. J. Mol. Biol.427, 3766–3784 (2016)10.1016/j.jmb.2015.09.020465866726449640
  74. Myszka K., Czaczyk K.: Mechanizm quorum sensing jako czynnik regulujący wirulencję bakterii Gram-ujemnych. Postepy Hig. Med. Dosw.64, 582–589 (2010)
  75. Nazarov S., Schneider J.P., Brackmann M., Goldie K.N., Stahlberg H., Basler M.: Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end. The EMBO Journal,e201797103 (2017)
  76. Nguyen V.S., Cambillau C. i wsp.: Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nat. Microbiol.2, DOI:10.1038/nmicrobiol.2017.103 (2017)10.1038/nmicrobiol.2017.10328650463
  77. Nikolakakis K.C., Low D.A. i wsp.: The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Mol. Microbiol.84, 516–529 (2012)
  78. Ogier J.C., Duvic B., Lanois A., Givaudan A., Gaudriault S.: A new member of the growing family of contact-dependent growth inhibition systems in Xenorhabdus doucetiae. PLoS ONE, 11, e0167443 (2016)10.1371/journal.pone.0167443513196227907104
  79. Peng Y., Tan C. i wsp.: Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia colitype VI secretion system. Sci. Rep.6, DOI: 10.1038/srep26816 (2016)10.1038/srep26816488254027229766
  80. Pukatzki S., McAuley S.B., Miyata S.T.: The type VI secretion system: translocation of effectors and effector-domains. Curr. Opin. Microbiol.12, 11–17 (2009)10.1016/j.mib.2008.11.01019162533
  81. Ray A., Schwartz N., de Souza Santos M., Zhang J., Orth K., Salomon D.: Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities. EMBO Reports, e201744226 (2017)10.15252/embr.201744226566659628912123
  82. Records A.R.: The Type VI Secretion System: A multipurpose delivery system with a phage-like machinery. Mol. Plant-Microbe Interact.24, 751–757 (2011)10.1094/MPMI-11-10-026221361789
  83. Rendueles O., Ghigo J.: Mechanisms of competition in biofilm bommunities. Microbiol. Spect.3, DOI:10.1128/microbiolspec. MB-0009-2014.f1 (2015)10.1128/microbiolspec
  84. Røder H.L., Sørensen S.J., Burmølle M.: Studying bacterial multispecies biofilms: Where to start? Trends Microbiol.24, 503–513 (2016)10.1016/j.tim.2016.02.01927004827
  85. Ruhe Z.C., Nguyen J.Y., Beck C.M., Low D.A., Hayes C.S.: The proton-motive force is required for translocation of CDI toxins across the inner membrane of target bacteria. Mol. Microbiol.94466–481 (2014)10.1111/mmi.12779419198525174572
  86. Ruhe Z.C., Nguyen J.Y., Chen A.J., Leung N.Y., Hayes C.S., Low D.A.: CDI systems are stably maintained by a cell-contact mediated surveillance mechanism. PLoS Genetics,12, e1006145 (2016)10.1371/journal.pgen.1006145492705727355474
  87. Ruhe Z.C., Nguyen J.Y., Xiong J., Koskiniemi S., Beck C.M., Perkins B.R., Low D.A., Hayes C.S.: CdiA effectors use modular receptor-binding domains to recognize target bacteria. mBio, 8, . DOI:10.1128/mBio.00290-17 (2017)10.1128/mBio.00290-17537141428351921
  88. Ruhe Z.C., Townsley L., Wallace A.B., King A., Van der Woude M.W., Low D.A., Yildiz F.H., Hayes C.S.: CdiA promotes receptor-independent intercellular adhesion. Mol. Microbiol.98, 175–192 (2015)10.1111/mmi.13114469459126135212
  89. Ruhe Z.C., Wallace A.B., Low D.A., Hayes C.S.: Receptor polymorphism restricts contact-dependent growth inhibition to members of the same species. mBio, 4: DOI:10.1128/ mBio.00480-13 (2013)10.1128/mBio.00480-13373518123882017
  90. Ruiz F.M., Santillana E., Spínola-Amilibia M., Torreira E., Culebras E., Romero A.: Crystal structure of Hcp from Acineto bacter baumannii: A component of the type VI secretion system. PLoS ONE, 10, e0129691 (2015)10.1371/journal.pone.0129691446960726079269
  91. Russell A.B., Hood R.D., Bui N.K., Leroux M., Vollmer W., Mougous J.D.: Type VI secretion delivers bacteriolytic effectors to target cells. Nature, 475: 343–349 (2011)10.1038/nature10244314602021776080
  92. Russell A.B., LeRoux M., Hathazi K., Agnello D.M., Ishikawa T., Wiggins P.A., Wai S.N., Mougous J.D.: Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature, 496, 508–512 (2013)10.1038/nature12074365267823552891
  93. Saak C.C., Gibbs K.A.: The self-identity protein IdsD is communicated between cells in swarming Proteus mirabilis colonies. J. Bacteriol.198, 3278–3286 (2016)10.1128/JB.00402-16511693127672195
  94. Saak C.C., Zepeda-Rivera M.A., Gibbs K.A.: A single point mutation in a TssB / VipA homolog disrupts sheath formation in the type VI secretion system of Proteus mirabilis. PLoS ONE, 12, e0184797 (2017)10.1371/journal.pone.0184797561452428949977
  95. Salomon D., Orth K.: Type VI secretion system. Curr. Biol.25, DOI:10.1016/j.cub.2015.02.031 (2015)10.1016/j.cub.2015.02.03125829005
  96. Sana T.G., Hachani A., Bucior I., Soscia C., Garvis S., Termine E., Egel J., Filloux A., Bleves S.: The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and fur and modulates internalization in epithelial cells. J. Biol. Chem.287, 27095–27105 (2012)10.1074/jbc.M112.376368341105222665491
  97. Satpathy S., Sen S.K., Pattanaik S., Raut S.: Review on bacterial biofilm: An universal cause of contamination. Biocatal. Agric. Biotechnol.7, 56–66 (2016)10.1016/j.bcab.2016.05.002
  98. Sha J., Rosenzweig J.A., Kozlova E.V., Wang S., Erova T.E., Kirtley M.L., van Lier C.J., Chopra A.K.: Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology, 159, 1120–1135 (2013)10.1099/mic.0.063495-0370969423519162
  99. Shneider M.M., Buth S.A., Ho B.T., Basler M., Mekalanos J.J., Leiman P.G.: PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature,500, 350–353 (2013)10.1038/nature12453379257823925114
  100. Silverman J.M., Agnello D.M., Zheng H., Andrews B.T., Li M., Catalano C.E., Gonen T., Mougous J.D.: Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol. Cell, 51, 584–593 (2013)
  101. Silverman J.M., Brunet Y.R., Cascales E., Mougous J.D.: Structure and regulation of the Type VI Secretion System. Annu. Rev. Microbiol.66, 453–472 (2012)10.1146/annurev-micro-121809-151619359500422746332
  102. Stubbendieck R.M., Straight P.D.: Multifaceted interfaces of bacterial competition. J. Bacteriol.198, 2145–2155 (2016)10.1128/JB.00275-16496643927246570
  103. Tan K., Johnson P.M., Stols L., Boubion B., Eschenfeldt W., Babnigg G., Hayes C.S., Joachimiak A., Goulding C.W.: The structure of a contact-dependent growth-inhibition (CDI) immunity protein from Neisseria meningitidis MC58. Acta Crystallogr. F Struct. Biol. Commun.71, 702–709 (2015)10.1107/S2053230X15006585446133426057799
  104. Tang J.Y., Bullen N.P., Ahmad S., Whitney J.C.: Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J. Biol. Chem.2, 1504–1514 (2017)10.1074/jbc.RA117.000178579828129237732
  105. Tian Y., Zhao Y., Wu X., Liu F., Hu B., Walcott R.R.: The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of Acidovorax citrulli on melon. Mol. Plant Pathol.16, 38–47 (2015)10.1111/mpp.12159663831524863458
  106. Unterweger D., Miyata S.T., Bachmann V., Brooks T.M., Mullins T., Kostiuk B., Provenzano D., Pukatzki S.: The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat. Commun.5, DOI:10.1038/ncomms4549 (2014)10.1038/ncomms4549398881424686479
  107. Van Ulsen P., Rahman S., Jong W.S.P., Daleke-Schermerhorn M.H., Luirink J.: Type V secretion: From biogenesis to biotechnology. Biochim. Biophys. Acta, 8, 1592–1611 (2014)
  108. Vassallo C.N., Cao P., Conklin A., Finkelstein H., Hayes C.S., Wall D.: Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. eLife, 6, DOI:10.7554/eLife.29397 (2017)10.7554/eLife.29397556244528820387
  109. Velicer G.J., Plucain J.: Evolution: Bacterial territoriality as a byproduct of kin discriminatory warfare. Curr. Biol.26, DOI:10.1016/j.cub.2016.03.033 (2016)10.1016/j.cub.2016.03.03327166695
  110. Wang L., Qiu J. i wsp.: Cell density- and quorum sensing-dependent expression of type VI secretion system 2 in Vibrio parahaemolyticus. PLoS ONE, 8, e73363 (2013)10.1371/journal.pone.0073363374464323977385
  111. Webb J.S., Nikolakakis K.C., Willett J.L.E., Aoki S.K., Hayes C.S., Low D.A.: Delivery of CdiA nuclease toxins into target cells during contact-dependent growth inhibition. PLoS ONE, 8, e57609 (2013)10.1371/journal.pone.0057609358518023469034
  112. Weber B., Hasic M., Chen C., Wai S.N., Milton D.L.: Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ. Microbiol.11, 3018–3028 (2009)10.1111/j.1462-2920.2009.02005.x19624706
  113. Wenren L.M., Sullivan N.L., Cardarelli L.: Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. mBio, 4, DOI:10.1128/mBio.00374-13. Editor (2013)10.1128/mBio.00374-13373518223882014
  114. Whitney J.C., Mougous J.D. i wsp.: Genetically distinct pathways guide effector export through the type VI secretion system. Mol. Microbiol.92, 529–542 (2014)
  115. Whitney J.C., Chou S., Russell A.B., Biboy J., Gardiner T.E., Ferrin M.A., Brittnacher M., Vollmer W., Mougous J.D.: Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J. Biol. Chem.288, 26616–26624 (2013)10.1074/jbc.M113.488320377220823878199
  116. Whitney J.C., Mougous J.D. i wsp.: A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. eLife, 6, DOI:10.7554/eLife.26938 (2017)10.7554/eLife.26938555571928696203
  117. Willett J.L.E., Gucinski G.C., Fatherree J.P., Low D.A., Hayes C.S.: Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proc. Natl. Acad. Sci. USA, 112, 11341–1346 (2015)10.1073/pnas.1512124112456865226305955
  118. Willett J.L.E., Ruhe Z.C., Goulding C.W., Low D.A., Hayes C.S.: Contact-dependent growth inhibition (CDI) and CdiA/CdiB two-partner secretion proteins. J. Mol. Biol.427, 3754–4765 (2015)10.1016/j.jmb.2015.09.010465827326388411
  119. Yang L., Liu Y., Wu H., Høiby N., Molin S., Song Z.: Current understanding of multi-species biofilms. Int. J. Oral Sci. 3,74–81 (2011)10.4248/IJOS11027346988021485311
  120. Zhang D., de Souza R.F., Anantharaman V., Iyer L.M., Aravind L.: Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct, 7, DOI:10.1186/1745-6150-7-18 (2012)10.1186/1745-6150-7-18348239122731697
  121. Zhang W., Xu S., Li J., Shen X., Wang Y., Yuan Z.: Modulation of a thermoregulated type VI secretion system by ahl-dependent quorum sensing in Yersinia pseudotuberculosis. Arch. Microbiol.193, 351–363 (2011)10.1007/s00203-011-0680-221298257
  122. Zheng J., Shin O.S., Cameron D.E., Mekalanos J.J.: Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc. Natl. Acad. Sci. USA, 107, 21128–21133 (2010)10.1073/pnas.1014998107300025021084635
  123. Zoued A., Brunet Y.R., Durand E., Aschtgen M.S., Logger L., Douzi B., Journet L., Cambillau C., Cascales E.: Architecture and assembly of the type VI secretion system. Biochim. Biophys. Acta, 1843, 1664–1673 (2014)
DOI: https://doi.org/10.21307/PM-2018.57.4.360 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 360 - 373
Submitted on: Apr 1, 2018
Accepted on: Aug 1, 2018
Published on: Feb 26, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Dawid Gmiter, Grzegorz Czerwonka, Wiesław Kaca, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.