References
- Bourne, P.E., Lorsch, J.R., & Green, E.D. (2015). Perspective: Sustaining the big-data ecosystem. Nature, 527(7576), S16–17.
- Brennan, C.W., Verhaak, R.G., McKenna, A., Campos, B., Noushmehr, H., Salama, S.R. (2013). The somatic genomic landscape of glioblastoma. Cell, 155(2), 462–477.
- Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.
- Chin, L., Hahn, W.C., Getz, G., & Meyerson, M. (2011). Making sense of cancer genomic data. Genes & Development, 25(6), 534–555.
- Green, E.D., Watson, J.D., & Collins, F.S. (2015). Human Genome Project: Twenty-five years of big biology. Nature, 526(7571), 29–31.
- Kafkas, S., Kim, J.H., & McEntyre, J.R. (2013). Database citation in full text biomedical articles. PLoS One, 8(5), e63184.
- Kafkas, S., Kim, J.H., Pi, X., & McEntyre, J.R. (2015). Database citation in supplementary data linked to Europe PubMed Central full text biomedical articles. Journal of Biomedical Semantics, 6, 1.
- Kibbe, W.A., Arze, C., Felix, V., Mitraka, E., Bolton, E., Fu, G., Mungall, C.J., Binder, J.X., Malone, J., Vasant, D., Parkinson, H., & Schriml, L.M. (2015). Disease Ontology 2015 Update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Research, 43(Database issue), D1071–1078.
- Leaman, R., Islamaj, D.R., & Lu, Z. (2013). DNorm: Disease name normalization with pairwise learning to rank. Bioinformatics, 29(22), 2909–2917.
- National Science Board (2005). Long-lived digital data collections: Enabling research and education in the 21st century. Retrieved on Oct 20, 2015, from http://www.nsf.gov/pubs/2005/nsb0540/
- Neveol, A., Wilbur, W.J., & Lu, Z. (2011) Extraction of data deposition statements from the literature: A method for automatically tracking research results. Bioinformatics, 27, 3306–3312.
- Neveol, A., Wilbur, W.J., & Lu, Z. (2012). Improving links between literature and biological data with text mining: A case study with GEO, PDB and MEDLINE. Database (Oxford), 2012, bas026.
- Peng, L., Bian, X.W., Li, D.K., Xu, C., Wang, G.M., Xia, Q.Y., & Xiong, Q. (2015). Large-scale RNA-Seq transcriptome analysis of 4043 cancers and 548 normal tissue controls across 12 TCGA cancer types. Scientific Report, 5, 13413.
- Piwowar, H., & Chapman, W. (2010). Recall and bias of retrieving gene expression microarray datasets through PubMed identifiers. Journal of Biomedical Discovery and Collaboration, 5, 7–20.
- Piwowar, H., & Vision, T.J. (2013). Data reuse and the open data citation advantage. Peer J, 1, e175.
- TCGA Data Matrix (2015). Retrieved on Oct. 20, 2015, from https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
- TCGA Publications (2016). Retrieved on Jan. 28, 2016, from http://cancergenome.nih.gov/publications.
- Tomczak, K., Czerwinska, P., & Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemporary Oncology, 19(1A), A68–77.
- Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63.
- Yu, Q., Ding, Y., Song, M., Song, S., Liu, J., & Zhang, B. (2015). Tracing database usage: Dectecting main paths in database link network, Journal of Informetrics, 9(1), 1–15.