References
- Abdi, F., & Ranaldo, A. (2017). A simple estimation of bid-ask spreads from daily close, high and low prices. The Review of Financial Studies, 30(12), 4437–4480. https://doi.org/10.1093/rfs/hhx084
- Aggarwal, N., & Thomas, S. (2014). The causal impact of algorithmic trading on market quality. Indira Gandhi Institute of Development Research, Mumbai Working Papers, 2014-023. http://www.igidr.ac.in/pdf/publication/WP-2014-023.pdf
- Ao, H., & Li, M. (2024). Exploiting the potential of a directional changes-based trading algorithm in the stock market. Finance Research Letters, 60, 104936. https://doi.org/10.1016/j.frl.2023.104936
- Arumugam, D., Prasanna, P. K., & Marathe, R. R. (2023). Do algorithmic traders exploit volatility? Journal of Behavioral and Experimental Finance, 37, 100778. https://doi.org/10.1016/j.jbef.2022.100778
- Banerjee, A., & Nawn, S. (2024). Proprietary algorithmic traders and liquidity supply during the pandemic. Finance Research Letters, 61, 105052. https://doi.org/10.1016/j.frl.2024.105052
- Będowska-Sójka, B., & Kliber, A. (2021). Information content of liquidity and volatility measures. Physica A: Statistical Mechanics and its Applications, 563, 125436. https://doi.org/10.1016/j.physa.2020.125436
- Behrendt, S., Dimpfl, T., Peter, F. J., & Zimmermann, D. J. (2019). RTransferentropy— quantifying information flow between different time series using effective transfer entropy. SoftwareX, 10, 100265. https://doi.org/10.1016/j.softx.2019.100265
- Bińkowski, M., & Lehalle, C.A. (2022). Endogenous dynamics of intraday liquidity. Journal of Portfolio Management Market Microstructure, 48(6), 145–169. https://doi.org/10.48550/arXiv.1811.03766
- Brauneis, A., & Mestel, R. (2018). Price discovery of cryptocurrencies: bitcoin and beyond. Economics Letters, 165, 58–61. https://doi.org/10.1016/j.econlet.2018.02.001
- Brogaard, J., Hendershott,T., & Riordan, R. (2014). High frequency trading and price discovery. The Review of Financial Studies, 27(8), 2267–2306. https://doi.org/10.1093/rfs/hhu032
- Courdent, A., & McClelland, D. (2022). The impact of algorithmic trading on market quality: Evidence from the Johannesburg Stock Exchange. Investment Analysts Journal, 51(3), 157–171. https://doi.org/10.1080/10293523.2022.2090056
- Desagre, C., D’Hondt, C. D., Petitjean, M. (2022). The rise of fast trading: Curse or blessing for liquidity? Finance, 43(3), 119–158. https://doi.org/10.2139/ssrn.3192597
- Díaz, A., & Escribano, A. (2020). Measuring the multi-faceted dimension of liquidity in financial markets: A literature review. Finance Research in International Business and Finance, 51, 101079. https://doi.org/10.1016/j.ribaf.2019.101079
- Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.006
- Diebold, F. X., & Yilmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134. https://doi.org/10.1016/j.jeconom.2014.04.012
- Dionisio, A., Menezes, R., & Mendes, D. A. (2004). Mutual information: A measure of dependency for nonlinear time series. Physica A: Statistical Mechanics and its Applications, 344(1), 326–329. https://doi.org/10.1016/j.physa.2004.06.144
- Directive 2014/65/EU of the European Parliament and of the Council of 15 May 2014 on markets in financial instruments and amending Directive 2002/92/EC and Directive 2011/61/EU (recast). OJ L 173, 12.6.2014, p. 349. https://data.europa.eu/eli/dir/2014/65/oj
- Dubey, R. K., Babu, A. S., Jha, R. R., & Varma, U. (2021). Algorithmic trading efficiency and its impact on market-quality. Asia-Pacific Financial Markets, 29, 381–409. https://doi.org/10.1007/s10690-021-09353-5
- Ekinci, C., & Ersan, O. (2022). High-frequency trading and market quality: The case of a “slightly exposed” market. International Review of Financial Analysis, 79, 102004. https://doi.org/10.1016/j.irfa.2021.102004
- Garman, M., & Klass, M. (1980). On the estimation of security price volatilities from historical data. Journal of Business, 53(1), 67–78. https://doi.org/10.1086/296072
- Gurgul, H., & Lach, Ł. (2012). The electricity consumption versus economic growth of the Polish economy. Energy Economics, 34(2), 500–510. https://doi.org/10.1016/j.eneco.2011.10.017
- Gurgul, H., Lach, Ł., & Mestel, R. (2012). The relationship between budgetary expenditure and economic growth in Poland. Central European Journal of Operations Research, 20(1), 161–182. https://doi.org/10.1007/s10100-010-0186-z
- Gurgul, H., & Machno, A. (2017). The impact of asynchronous trading on Epps effect on Warsaw Stock Exchange. Central European Journal of Operations Research, 25, 287–301. https://doi.org/10.1007/s10100-016-0442-y
- Gurgul, H., & Syrek, R. (2023). Contagion between selected European indexes during the COVID-19 pandemic, Operations Research and Decisions, 33(1), 47–59. https://doi.org/10.37190/ord230104
- He, J., & Shang, P. (2017). Comparison of transfer entropy methods for financial time series. Physica A: Statistical Mechanics and its Applications, 482, 772–785. https://doi.org/10.1016/j.physa.2017.04.089
- Hendershott, T., Jones, C. M., & Menkveld, A. J. (2011). Does algorithmic trading improve liquidity? The Journal of Finance, 66(1), 1–33. https://doi.org/10.1111/j.1540-6261.2010.01624.x
- Hendershott, T., & Riordan, R. (2013). Algorithmic trading and the market for liquidity. Journal of Financial and Quantitative Analysis, 48(4), 1001–1024. https://doi.org/10.1017/S0022109013000471
- Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., & Bhattacharya, J. (2007). Causality detection based on information-theoretic approaches in time series analysis. Physics Reports, 441(1), 1–46. https://doi.org/10.1016/j.physrep.2006.12.004
- Jain, A., Jain, C., & Khanapure, R. B. (2021). Do algorithmic traders improve liquidity when information asymmetry is high? Quarterly Journal of Finance, 11(1), 2050015. https://doi.org/10.1142/S2010139220500159
- Lacava, D., Ranaldo, A., & Santucci de Magistris, P. (2023). Realized illiquidity. Swiss Finance Institute Research Paper, 22–90. https://doi.org/10.2139/ssrn.4282541
- Leone, V., & Kwabi, F. (2019). High frequency trading, price discovery and market efficiency in the FTSE100. Economics Letters, 181, 174–177. https://doi.org/10.1016/j.econlet.2019.05.022
- Lesmond, D. A. (2005). Liquidity of emerging markets. Journal of Financial Economics, 77(2), 411–452. https://doi.org/10.1016/j.jfineco.2004.01.005
- Mestel, R., Murg, M., & Theissen, E. (2018). Algorithmic trading and liquidity: Long term evidence from Austria. Finance Research Letters, 26, 198–203. https://doi.org/10.1016/j.frl.2018.01.004
- Mestel, R., Steffen, V., & Theissen, E. (2024). Algorithmic trading and mini flash crashes: Evidence from Austria. Economics Letters, 244, 111982. https://doi.org/10.1016/j.econlet.2024.111982
- Ramos, H. P., & Perlin, M. S. (2020). Does algorithmic trading harm liquidity? Evidence from Brazil. North American Journal of Economics and Finance, 54, 101243. https://doi.org/10.1016/j.najef.2020.101243
- Shimotsu, K., & Phillips, P. C. B. (2005). Exact local whittle estimation of fractional integration. The Annals of Statistics, 33(4), 1890–1933. https://doi.org/10.1214/009053605000000309
- Syczewska, E., & Struzik, Z. (2015). Granger causality and transfer entropy for financial returns. Acta Physica Polonica A, 127(3A), 129–135. https://doi.org/10.12693/APhysPolA.127.A-129