Have a personal or library account? Click to login
Unveiling financial well-being: Insights from retired people in Third Age group in Poland, Spain and Denmark Cover

Unveiling financial well-being: Insights from retired people in Third Age group in Poland, Spain and Denmark

Open Access
|Oct 2024

References

  1. Albuquerque, B., & Green, G. (2022). MAR financial concerns and the marginal propensity to consume in COVID times: Evidence from UK survey data. IMF Working Papers, 22/47. https://doi.org/10.5089/9798400203466.001
  2. Artazcoz, L., Cortès-Franch, I., Escribà-Agüir, V., & Benavides, F. G. (2021). Financial strain and health status among European workers: Gender and welfare state inequalities. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.616191
  3. Badowski, K. (2022). A strategy& survey: More modest lifestyles and less spending— the lives of Polish consumers. https://www.pwc.pl/pl/pdf-nf/2022/Strategyand_report_More_modest_lifestyles_and_less_spending-the_lives_of_Polish_consumers.pdf
  4. Badri, M., Aldhaheri, H., Alkhaili, M., Yang, G., Albahar, M., Alrashdi, A., & Alsawai, A. (2022). Wellbeing determinants of household’s ability to make ends meet—a hierarchical regression model for Abu Dhabi. International Journal of Social Sciences and Economic Review, 4(3), 26–36. https://doi.org/10.36923/ijsser.v4i3.175
  5. Barković Bojanić, I., Erceg, A., & Damoska Sekuloska, J. (2024). Silver entrepreneurship: A golden opportunity for ageing society. Economics and Business Review, 10(1), 153–178. https://doi.org/10.18559/ebr.2024.1
  6. Bergmann, M., & Börsch-Supan, A. (Eds.). (2021). SHARE Wave 8 methodology: Collecting cross-national survey data in times of COVID-19. MEA, Max Planck Institute for Social Law and Social Policy.
  7. BIG InfoMonitor. (2021). InfoDług – Ogólnopolski raport o zaległym zadłużeniu i niesolidnych dłużnikach. https://media.big.pl/publikacje/650730/infodlug-ogolnopolski-raport-o-zaleglym-zadluzeniu-i-niesolidnych-dluznikach-marzec-2021-41-edycja
  8. Börsch-Supan, A. (2022). Survey of health, ageing and retirement in Europe (SHARE) wave 8. Release version: 8.0.0. SHARE-ERIC.
  9. Brünner, R. N., & Andersen, S. S. (2018). Making meaning of financial scarcity in old age. Journal of Aging Studies, 47, 114–122. https://doi.org/10.1016/j.jaging.2018.04.001
  10. CFPB (Consumer Financial Protection Bureau). (2015). Measuring financial well-being: A guide to using the CFPB Financial Well-Being Scale. https://www.consumerfinance.gov/data-research/research-reports/financial-well-being-scale/
  11. CFPB (Consumer Financial Protection Bureau). (2017). CFPB Financial Well-Being Scale: Scale development technical report. https://www.consumerfinance.gov/data-research/research-reports/financial-well-being-technical-report/
  12. CFPB (Consumer Financial Protection Bureau). (2020). Insights from the making ends meet survey. https://www.consumerfinance.gov/data-research/research-reports/insights-making-ends-meet-survey
  13. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17 August 2016. https://doi.org/10.1145/2939672.2939785
  14. Danziger, S., & Wang, H. C. (2005). Does it pay to move from welfare to work? Reply to Robert Moffitt and Katie Winder. Journal of Policy Analysis and Management, 24(2), 411–417. https://doi.org/10.1002/pam.20096
  15. Dudek, H., & Wojewódzka-Wiewiórska, A. (2023). Household inability to make ends meet: What changed in the first year of the COVID-19 pandemic in Poland? Communications of International Proceedings, (2). https://doi.org/10.5171/2023.4119423
  16. European Commission. (2021). Methodological guidelines and description of EU-SILC target variables. https://ec.europa.eu/eurostat/documents/203647/16195750/2021_Doc65_EUSILC_User_Guide.pdf
  17. European Commission. (2024). Ageing Europe—statistics on working and moving into retirement. https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=581874#Employment_patterns_among_older_people
  18. Eurostat. (2021). Ageing Europe—2021 interactive edition. https://ec.europa.eu/eurostat/cache/digpub/ageing/
  19. Eurostat. (2022a). Ability to make ends meet becoming harder. https://ec.europa.eu/eurostat/web/products-eurostat-news/w/DDN-20221128-2
  20. Eurostat. (2022b). Quality of life indicators—material living conditions. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Quality_of_life_indicators_-_material_living_conditions
  21. Eurostat. (2024). Population structure indicators at national level. https://ec.europa.eu/eurostat/databrowser/view/demo_pjanind/default/table?lang=en
  22. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232.
  23. Gray, A. (2009). The social capital of older people. Ageing and Society, 29(1), 5–31.
  24. Gumà-Lao, J. (2022). The influence of economic factors on the relationship between partnership status and health: A gender approach to the Spanish case. International Journal of Environmental Research and Public Health, 19(5), 2975. https://doi.org/10.3390/ijerph19052975
  25. Hébert, S., & Gyarmati, D. (2014). Financial capability and essential skills: An exploratory analysis. https://www.canada.ca/content/dam/canada/financial-consumer-agency/migration/eng/resources/researchsurveys/documents/fincapessskill-capfincompess-eng.pdf
  26. Heflin, C. (2016). Family instability and material hardship: Results from the 2008 survey of income and program participation. Journal of Family and Economic Issues, 37(3), 359–372.
  27. Horowitz, J., Brown, A., & Minkin, R. (2021). A year into the pandemic, long-term financial impact weighs heavily on many Americans. https://www.pewresearch.org/social-trends/2021/03/05/a-year-into-the-pandemic-long-term-financial-impactweighs-heavily-on-many-americans/
  28. Johar, G., Meng, R., & Wilcox, K. (2015). Thinking about financial deprivation: Rumination and decision making among the poor. Association for Consumer Research, 43, 208–211.
  29. Kahneman, D., & Deaton, A. (2010). High income improves evaluation of life but not emotional well-being. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16489–16493. https://doi.org/10.1073/pnas.1011492107
  30. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. https://github.com/Microsoft/LightGBM
  31. LightGBM Documentation. (2024). https://lightgbm.readthedocs.io/en/stable/
  32. Lundberg, S., & Lee, S. I. (2017). A unified approach to interpreting model predictions. https://arxiv.org/abs/1705.07874
  33. Madakkatel, I., Chiera, B., & McDonnell, M. D. (2019). Predicting financial well-being using observable features and gradient boosting. Lecture Notes in Computer Science, 11919, 228–239. https://doi.org/10.1007/978-3-030-35288-2_19
  34. Marjanovic, Z., Greenglass, E. R., Fiksenbaum, L., De Witte, H., Garcia-Santos, F., Buchwald, P., Peiró, J. M., & Mañas, M. A. (2015). Evaluation of the financial threat scale (FTS) in four European, non-student samples. Journal of Behavioral and Experimental Economics, 55, 72–80. https://doi.org/10.1016/j.socec.2014.12.001
  35. Meng, A., Sundstrup, E., & Andersen, L. L. (2020). Factors contributing to retirement decisions in Denmark: Comparing employees who expect to retire before, at, and after the state pension age. International Journal of Environmental Research and Public Health, 17(9), 3338. https://doi.org/10.3390/ijerph17093338
  36. Mercer. (2023). Mercer CFA institute global pension index 2023. https://www.mercer.com/insights/investments/market-outlook-and-trends/mercer-cfa-global-pension-index/
  37. Netemeyer, R. G., Warmath, D., Fernandes, D., & Lynch, J. G. (2018). How am I doing? Perceived financial well-being, its potential antecedents, and its relation to overall well-being. Journal of Consumer Research, 45(1), 68–89. https://doi.org/10.1093/jcr/ucx109
  38. Niemczyk, A., Szalonka, K., Gardocka-Jałowiec, A., Nowak, W., Seweryn, R., & Gródek-Szostak, Z. (2023). The silver economy. Routledge. https://doi.org/10.4324/9781003377313
  39. Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3(5), 400–424. https://doi.org/10.1111/j.1745-6924.2008.00088.x
  40. OECD. (2021). COVID-19 and well-being: Life in the pandemic. OECD Publishing. https://doi.org/10.1787/1e1ecb53-en
  41. Olson, R. S., La Cava, W., Mustahsan, Z., Varik, A., & Moore, J. H. (2017). Data-driven advice for applying machine learning to bioinformatics problems. https://arxiv.org/abs/1708.05070
  42. Parker, K., Minkin, R., & Bennett, J. (2020). Economic fallout from COVID-19 continues to hit lower-income Americans the hardest. https://www.pewresearch.org/social-trends/2020/09/24/economic-fallout-from-covid-19-continues-to-hit-lower-income-americans-the-hardest/
  43. Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
  44. Sconti, A. (2022). Having trouble making ends meet? Financial literacy makes the difference. Italian Economic Journal, 10, 377–408. https://doi.org/10.1007/s40797-022-00212-4
  45. Serrano, J. P., Latorre, J. M., & Gatz, M. (2014). Spain: Promoting the welfare of older adults in the context of population aging. Gerontologist, 54(5), 733–740. https://doi.org/10.1093/geront/gnu010
  46. Seto, H., Oyama, A., Kitora, S., Toki, H., Yamamoto, R., Kotoku, J., Haga, A., Shinzawa, M., Yamakawa, M., Fukui, S., & Moriyama, T. (2022). Gradient boosting decision tree becomes more reliable than logistic regression in predicting probability for diabetes with big data. Scientific Reports, 12(1), 15889. https://doi.org/10.1038/s41598-022-20149-z
  47. Silberman-Beltramella, M., Ayala, A., Rodríguez-Blázquez, C., & Forjaz, M. J. (2022). Social relations and health in older people in Spain using SHARE survey data. BMC Geriatrics, 22(1), 29–75. https://doi.org/10.1186/s12877-022-02975-y
  48. Tilly, L. (2012). Having friends—they help you when you are stuck from money, friends and making ends meet research group. Learning Disabilities, 40(2), 128–133.
  49. Tur-Sinai, A., Paz, A., & Doron, I. (2022). Self-rated health and socioeconomic status in old age: The role of gender and the moderating effect of time and welfare regime in Europe. Sustainability, 14(7), 74240. https://doi.org/10.3390/su14074240
  50. Watanabe, M., Eguchi, A., Sakurai, K., Yamamoto, M., Mori, C., Kamijima, M., Yamazakii, S., Ohya, Y., Kishi, R., Yaegashi, N., Hashimoto, K., Mori, C., Ito, S., Yamagata, Z., Inadera, H., Nakayama, T., Sobue, T., Shima, M., Kageyama, S., … Katoh, T. (2023). Prediction of gestational diabetes mellitus using machine learning from birth cohort data of the Japan environment and children’s study. Scientific Reports, 13(1), 17419. https://doi.org/10.1038/s41598-023-44313-1
  51. Wilkinson, L. R. (2016). Financial strain and mental health among older adults during the Great Recession. The Journals of Gerontology: Series B, 71(4), 745–754. https://doi.org/10.1093/geronb/gbw001
DOI: https://doi.org/10.18559/ebr.2024.3.981 | Journal eISSN: 2450-0097 | Journal ISSN: 2392-1641
Language: English
Page range: 7 - 33
Submitted on: Jan 16, 2024
Accepted on: Jul 10, 2024
Published on: Oct 6, 2024
Published by: Poznań University of Economics and Business Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Alicja Jajko-Siwek, published by Poznań University of Economics and Business Press
This work is licensed under the Creative Commons Attribution 4.0 License.