Have a personal or library account? Click to login
Personal bankruptcy prediction using machine learning techniques Cover

Personal bankruptcy prediction using machine learning techniques

Open Access
|Jul 2024

References

  1. Al Daoud, E. (2019). Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset. International Journal of Computer and Information Engineering, 13(1), 6–10.
  2. Alam, N., Gao, J., & Jones, S. (2021). Corporate failure prediction: An evaluation of deep learning vs discrete hazard models. Journal of International Financial Markets, Institutions and Money, 75, 101455. https://doi.org/10.1016/j.intfin.2021.101455
  3. Alfaro, E., García, N., Gámez, M., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45(1), 110–122. https://doi.org/10.1016/j.dss.2007.12.002
  4. Altman, E. I., & Kuehne, B. J. (2016). Credit markets and bubbles: Is the benign credit cycle over? Economics and Business Review, 2(3), 20–31. https://doi.org/10.18559/ebr.2016.3.3
  5. Barboza, F., Basso, L. F. C., & Kimura, H. (2021). New metrics and approaches for predicting bankruptcy. Communications in Statistics-Simulation and Computation, 52(6), 2615–2632. https://doi.org/10.1080/03610918.2021.1910837
  6. Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405–417. https://doi.org/10.1016/j.eswa.2017.04.006
  7. Berlemann, M., & Salland, J. (2016). The Joneses’ income and debt market participation: Empirical evidence from bank account data. Economics Letters, 142, 6–9. https://doi.org/10.1016/j.econlet.2016.02.030
  8. Bragoli, D., Ferretti, C., Ganugi, P., Marseguerra, G., Mezzogori, D., & Zammori, F. (2022). Machine-learning models for bankruptcy prediction: do industrial variables matter? Spatial Economic Analysis, 17(2), 156–177. https://doi.org/10.1080/17421772.2021.1977377
  9. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
  10. Brotcke, L. (2022). Time to assess bias in machine learning models for credit decisions. Journal of Risk and Financial Management, 15(4), 165. https://doi.org/10.3390/jrfm15040165
  11. Brygała, M. (2022). Consumer bankruptcy prediction using balanced and imbalanced data. Risks, 10(2), 24. https://doi.org/10.3390/risks10020024
  12. Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2020). Explainable AI in fintech risk management. Frontiers in Artificial Intelligence, 3, 26. https://doi.org/10.3389/frai.2020.00026
  13. Carmona, P., Dwekat, A., & Mardawi, Z. (2022). No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure. Research in International Business and Finance, 61, 101649. https://doi.org/10.1016/j.ribaf.2022.101649
  14. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 785–794. https://doi.org/10.1145/2939672.2939785
  15. CFPB (Consumer Financial Protection Bureau). (2022). Is a lender allowed to consider my age or where my income comes from when deciding whether to give me a loan? https://www.consumerfinance.gov/ask-cfpb/is-a-lender-allowed-to-consider-my-age-or-where-my-income-comes-from-when-deciding-whether-to-give-me-a-loan-en-1181/
  16. Coşer, A., Maer-matei, M. M., & Albu, C. (2019). Predictive models for loan default risk assessment. Economic Computation & Economic Cybernetics Studies & Research, 53(2). https://doi.org/10.24818/18423264/53.2.19.09
  17. de Castro Vieira, J. R., Barboza, F., Sobreiro, V. A., & Kimura, H. (2019). Machine learning models for credit analysis improvements: Predicting low-income families’ default. Applied Soft Computing, 83, 105640. https://doi.org/10.1016/j.asoc.2019.105640
  18. Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: Gradient boosting with categorical features support. https://doi.org/10.48550/arXiv.1810.11363
  19. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504
  20. Garcia, J. (2022). Bankruptcy prediction using synthetic sampling. Machine Learning with Applications, 9, 100343. https://doi.org/10.1016/j.mlwa.2022.100343
  21. Georgarakos, D., Haliassos, M., & Pasini, G. (2014). Household debt and social interactions. The Review of Financial Studies, 27(5), 1404–1433. https://doi.org/10.1093/rfs/hhu014
  22. Gramegna, A., & Giudici, P. (2021). SHAP and LIME: An evaluation of discriminative power in credit risk. Frontiers in Artificial Intelligence, 4, 752558. https://doi.org/10.3389/frai.2021.752558
  23. Halim, Z., Shuhidan, S. M., & Sanusi, Z. M. (2021). Corporation financial distress prediction with deep learning: Analysis of public listed companies in Malaysia. Business Process Management Journal, 274), 1163–1178. https://doi.org/10.1108/bpmj-062020-0273
  24. Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: An interdisciplinary review. Journal of Big Data, 7(1), 94. https://doi.org/10.1186/s40537-020-00369-8
  25. Heo, J., & Yang, J. Y. (2014). AdaBoost based bankruptcy forecasting of Korean construction companies. Applied Soft Computing, 24, 494–499. https://doi.org/10.1016/j.asoc.2014.08.009
  26. Jabeur, S. B., Gharib, C., Mefteh-Wali, S., & Arfi, W. B. (2021). CatBoost model and artificial intelligence techniques for corporate failure prediction. Technological Forecasting and Social Change, 166, 120658. https://doi.org/10.1016/j.techfore.2021.120658
  27. Jabeur, S. B., Mefteh-Wali, S., & Viviani, J. L. (2021). Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Annals of Operations Research, 334, 679–699. https://doi.org/10.1007/s10479-021-04187-w
  28. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30.
  29. Khare, N., & Sait, S. Y. (2018). Credit card fraud detection using machine learning models and collating machine learning models. International Journal of Pure and Applied Mathematics, 118(20), 825–838.
  30. Korol, T. (2021). Examining statistical methods in forecasting financial energy of households in Poland and Taiwan. Energies, 14(7), 1821. https://doi.org/10.3390/en14071821
  31. Korol, T., & Fotiadis, A. K. (2022). Implementing artificial intelligence in forecasting the risk of personal bankruptcies in Poland and Taiwan. Oeconomia Copernicana, 13(2), 407. https://doi.org/10.24136/oc.2022.013
  32. Kovacova, M., Kliestik, T., Valaskova, K., Durana, P., & Juhaszova, Z. (2019). Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743–772. https://doi.org/10.24136/oc.2019.034
  33. Kovacova, M., & Kliestikova, J. (2017). Modelling bankruptcy prediction models in Slovak companies. SHS Web of Conferences, vol. 39, p. 01013. EDP Sciences. https://doi.org/10.1051/shsconf/20173901013
  34. Le, T., Lee, M. Y., Park, J. R., & Baik, S. W. (2018). Oversampling techniques for bankruptcy prediction: Novel features from a transaction dataset. Symmetry, 10(4), 79. https://doi.org/10.3390/sym10040079
  35. Letza, S. R., Kalupa, Ł., & Kowalski, T. (2003). Predicting corporate failure: How useful are multi discriminant analysis models? Economics and Business Review, 3(2), 5–11. https://doi.org/10.18559/ebr.2003.2.494
  36. Liang, D., Lu, C. C., Tsai, C. F., & Shih, G. A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561–572. https://doi.org/10.1016/j.ejor.2016.01.012
  37. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.
  38. Machado, M. R., & Karray, S. (2022). Assessing credit risk of commercial customers using hybrid machine learning algorithms. Expert Systems with Applications, 200, 116889. https://doi.org/10.1016/j.eswa.2022.116889
  39. Mangalathu, S., Hwang, S. H., & Jeon, J. S. (2020). Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Engineering Structures, 219, 110927. https://doi.org/10.1016/j.engstruct.2020.110927
  40. Mihalovič, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics & Sociology, 9(4). https://doi.org/10.14254/2071-789x.2016/9-4/6
  41. Mo, H., Sun, H., Liu, J., & Wei, S. (2019). Developing window behavior models for residential buildings using XGBoost algorithm. Energy and Buildings, 205, 109564. https://doi.org/10.1016/j.enbuild.2019.109564
  42. Papík, M., & Papíková, L. (2023). Impacts of crisis on SME bankruptcy prediction models’ performance. Expert Systems with Applications, 214, 119072. https:/doi.org/10.1016/j.eswa.2022.119072
  43. Papík, M., Papíková, L., Kajanová, J., & Bečka, M. (2023). CatBoost: The case of bankruptcy prediction. International Conference on Business and Technology, pp. 3–17. Springer.
  44. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased boosting with categorical features. Advances in Neural Information Processing Systems, 31.
  45. Saarela, M., & Jauhiainen, S. (2021). Comparison of feature importance measures as explanations for classification models. SN Applied Sciences, 3, 272. https://doi.org/10.1007/s42452-021-04148-9
  46. Sahiq, A. N. M., Ismail, S., Nor, S. H. S., Ul-Saufie, A. Z., & Yaacob, W. F. W. (2022, September). Application of logistic regression model on imbalanced data in personal bankruptcy prediction. 2022 3rd International Conference on Artificial Intelligence and Data Sciences (AiDAS) (pp. 120–125). IEEE. https://doi.org/10.1109/aidas56890.2022.9918779
  47. Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. The Stata Journal, 20(1), 3–29. https://doi.org/10.1177/1536867x20909688
  48. Shi, S., Tse, R., Luo, W., D’Addona, S., & Pau, G. (2022). Machine learning-driven credit risk: A systemic review. Neural Computing and Applications, 34(17), 14327–14339. https://doi.org/10.1007/s00521-022-07472-2
  49. Son, H., Hyun, C., Phan, D., & Hwang, H. J. (2019). Data analytic approach for bankruptcy prediction. Expert Systems with Applications, 138, 112816. https://doi.org/10.1016/j.eswa.2019.07.033
  50. Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, 69, 135–146. https://doi.org/10.1016/j.indmarman.2017.12.019
  51. Syed Nor, S. H., Ismail, S., & Yap, B. W. (2019). Personal bankruptcy prediction using decision tree model. Journal of Economics, Finance and Administrative Science, 24(47), 157–170. https://doi.org/10.1108/jefas-08-2018-0076
  52. Wang, D. N., Li, L., & Zhao, D. (2022). Corporate finance risk prediction based on LightGBM. Information Sciences, 602, 259–268. https://doi.org/10.1016/j.ins.2022.04.058
  53. Wu, D. J., Feng, T., Naehrig, M., & Lauter, K. E. (2016). Privately evaluating decision trees and random forests. Proceedings on Privacy Enhancing Technologies, (4), 335–355. https://doi.org/10.1515/popets-2016-0043
  54. Yen, S. J., & Lee, Y. S. (2009). Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems with Applications, 36(3), 5718–5727. https://doi.org/10.1016/j.eswa.2008.06.108
  55. Zelenkov, Y., & Volodarskiy, N. (2021). Bankruptcy prediction on the base of the unbalanced data using multi-objective selection of classifiers. Expert Systems with Applications, 185, 115559. https://doi.org/10.1016/j.eswa.2021.115559
  56. Zhang, L., Wang, J., & Liu, Z. (2023). What should lenders be more concerned about? Developing a profit-driven loan default prediction model. Expert Systems with Applications, 213, 118938. https://doi.org/10.1016/j.eswa.2022.118938
DOI: https://doi.org/10.18559/ebr.2024.2.1149 | Journal eISSN: 2450-0097 | Journal ISSN: 2392-1641
Language: English
Page range: 118 - 142
Submitted on: Jan 23, 2024
Accepted on: Apr 7, 2024
Published on: Jul 13, 2024
Published by: Poznań University of Economics and Business Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Magdalena Brygała, Tomasz Korol, published by Poznań University of Economics and Business Press
This work is licensed under the Creative Commons Attribution 4.0 License.