Have a personal or library account? Click to login
Google Search intensity and stock returns in frontier markets: Evidence from the Vietnamese market1 Cover

Google Search intensity and stock returns in frontier markets: Evidence from the Vietnamese market1

Open Access
|Apr 2024

References

  1. Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In E. Parzen, K. Tanabe, & G. Kitagawa (Eds.), Selected papers of Hirotugu Akaike (pp. 199–213). Springer. https://doi.org/10.1007/978-1-4612-1694-0_15
  2. Akarsu, S., & Süer, Ö. (2021). How investor attention affects stock returns? Some international evidence. Borsa Istanbul Review, 22(3), 616–626. https://doi.org/10.1016/j.bir.2021.09.001
  3. Aouadi, A., Arouri, M., & Teulon, F. (2013). Investor attention and stock market activity: Evidence from France. Economic Modelling, 35, 674–681.
  4. Bank, M., Larch, M., & Peter, G. (2011). Google Search volume and its influence on liquidity and returns of German stocks. Financial Markets and Portfolio Management, 25(3), 239–264.
  5. Barber, B. M., & Odean, T. (2007). All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The Review of Financial Studies, 21(2), 785–818.
  6. Bijl, L., Kringhaug, G., Molnár, P., & Sandvik, E. (2016). Google searches and stock returns. International Review of Financial Analysis, 45, 150–156. https://doi.org/10.1016/j.irfa.2016.03.015
  7. Black, F. (1986). Noise. The Journal of Finance, 41(3), 528–543.
  8. Chen, T. (2017). Investor attention and global stock returns. Journal of Behavioral Finance, 18(3), 358–372.
  9. Chundakkadan, R., & Nedumparambil, E. (2022). In search of COVID-19 and stock market behavior. Global Finance Journal, 54, 100639.
  10. Costola, M., Iacopini, M., & Santagiustina, C. R. M. A. (2021). Google search volumes and the financial markets during the COVID-19 outbreak. Finance Research Letters, 42, 101884. https://doi.org/10.1016/j.frl.2020.101884
  11. Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. The Journal of Finance, 66(5), 1461–1499. https://doi.org/10.1111/j.1540-6261.2011.01679.x
  12. Ding, D., Guan, C., Chan, C. M. L., & Liu, W. (2020). Building stock market resilience through digital transformation: Using Google Trends to analyze the impact of COVID-19 pandemic. Frontiers of Business Research in China, 14(1), 21. https://doi.org/10.1186/s11782-020-00089-z
  13. Duz Tan, S., & Tas, O. (2021). Social media sentiment in international stock returns and trading activity. Journal of Behavioral Finance, 22(2), 221–234. https://doi.org/10.1080/15427560.2020.1772261
  14. Ekinci, C., & Bulut, A. E. (2021). Google search and stock returns: A study on BIST 100 stocks. Global Finance Journal, 47, 100518. https://doi.org/10.1016/j.gfj.2020.100518
  15. Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383–417.
  16. Fang, K., Wu, J., & Nguyen, C. (2017). The risk-return trade-off in a liberalized emerging stock market: Evidence from Vietnam. Emerging Markets Finance and Trade, 53(4), 746–763. https://doi.org/10.1080/1540496X.2015.1103129
  17. Gervais, S., Kaniel, R., & Mingelgrin, D. H. (2001). The high-volume return premium. The Journal of Finance, 56(3), 877–919.
  18. Gheorghe, C., & Panazan, O. (2023). Effects of information related to the Russia–Ukraine conflict on stock volatility: An EGARCH approach. Cogent Economics & Finance, 11(2), 2241205. https://doi.org/10.1080/23322039.2023.2241205
  19. Grullon, G., Kanatas, G., & Weston, J. P. (2004). Advertising, breadth of ownership, and liquidity. Review of Financial Studies, 17(2), 439–461.
  20. Joseph, K., Wintoki, M., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from an online search. International Journal of Forecasting, 27(4), 1116–1127.
  21. Khanh, T. Q., Hoai, N. T., Duc, D. T. V., & Nguyen, D. P. (2022). Effects of investor via internet search intensity on stock market: Evidence in Vietnam market. International Symposium on Sustainable Development in Transition Economies, November 24–26, Hanoi, Vietnam.
  22. Khoa, B. T., & Huynh, T. T. (2023). Comparing the predictive efficiency of Fama-French Three-Factor Model and Carhart Four-Factor Model: Financial market approach. 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), 7–9 April.
  23. Kim, N., Lučivjanská, K., Molnár, P., & Villa, R. (2019). Google searches and stock market activity: Evidence from Norway. Finance Research Letters, 28, 208–220. https://doi.org/10.1016/j.frl.2018.05.003
  24. Kropiński, P., & Anholcer, M. (2022). How Google Trends can improve market predictions—the case of the Warsaw Stock Exchange. Economics and Business Review, 8(2), 7–28. https://doi.org/10.18559/ebr.2022.2.2
  25. Lawrence, A., Ryans, J., Sun, E., & Laptev, N. (2016, July 1). Yahoo Finance search and earnings announcements. https://doi.org/10.2139/ssrn.2804353
  26. Lee, H. S. (2021). Exploring the initial impact of COVID-19 sentiment on US stock market using big data. Sustainability, 12(16), 6648.
  27. Loh, R. K. (2010). Investor inattention and the underreaction to stock recommendations. Financial Management, 39(3), 1223–1252.
  28. Long, J. B. D., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of Political Economy, 98(4), 703–738.
  29. Mangold, B., Dooley, M., Flake, G. W., Hoffman, H., Kasturi, T., Pennock, D. M., & Dornfest, R. (2005). The tech buzz game [stock market prediction]. Computer, 38(7), 94–97.
  30. Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete information. The Journal of Finance, 42(3), 483–510. https://doi.org/10.1111/j.1540-6261.1987.tb04565.x
  31. MSCI. (2022). The MSCI market classification framework. https://www.msci.com/documents/1296102/6a6cbb4e-d14d-10a4-0cec-7a23608c0464
  32. Nguyen, C., Hoang, L., Shim, J., & Truong, P. (2020). Internet search intensity, liquidity and returns in emerging markets. Research in International Business and Finance, 52, 101166. https://doi.org/10.1016/j.ribaf.2019.101166
  33. Nguyen, C. P., Schinckus, C., & Nguyen, T. V. H. (2019). Google search and stock returns in emerging markets. Borsa Istanbul Review, 19(4), 288–296. https://doi.org/10.1016/j.bir.2019.07.001
  34. Odean, T. (1999). Do investors trade too much? American Economic Review, 89(5), 1279–1298. https://doi.org/10.1257/aer.89.5.1279
  35. Osarumwense, O. I. (2020). Investors’ attention: Does it impact the Nigerian stock market activities? Journal of Economics and Development, 23(1), 59–76. https://www.researchgate.net/publication/345412999_Investors’_attention_does_it_impact_the_Nigerian_stock_market_activities
  36. Ozili, P. K. (2022, June 5). The acceptable R-square in empirical modelling for social science research. Social Research Methodology and Publishing Results. https://doi.org/10.2139/ssrn.4128165
  37. Peress, J. (2008). Media coverage and investors’ attention to earnings announcements. https://doi.org/10.2139/ssrn.2723916
  38. Perlin, M. S., Caldeira, J. F., Santos, A. A., & Pontuschka, M. (2017). Can we predict the financial markets based on Google’s search queries? Journal of Forecasting, 36(4), 454–467.
  39. Preis, T., Reith, D., & Stanley, H. E. (2010). Complex dynamics of our economic life on different scales: Insights from search engine query data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 5707–5719.
  40. Pyo, D. J. (2017). Can big data help predict financial market dynamics?: Evidence from the Korean stock market. East Asian Economic Review, 21(2), 147–165.
  41. Rao, Y. L., Peng, D. F., & Cheng, D. C. (2010). Does media attention cause abnormal return? Evidence from China’s stock market. Systems Engineering-Theory & Practice, 30(2), 287–297.
  42. Shear, F., Ashraf, B. N., & Sadaqat, M. (2021). Are investors’ attention and uncertainty aversion the risk factors for stock markets? International evidence from the COVID-19 crisis. Risks, 9(1), 2.
  43. Shen, D., Zhang, Y., Xiong, X., & Zhang, W. (2017). Baidu index and predictability of Chinese stock returns. Financial Innovation, 3, 1–8.
  44. Shleifer, A., & Summers, L. H. (1990). The noise trader approach to finance. Journal of Economic Perspectives, 4(2), 19–33.
  45. Siganos, A. (2013). Google attention and target price run ups. International Review of Financial Analysis, 29, 219–226. https://doi.org/10.1016/j.irfa.2012.11.002
  46. Smales, L. A. (2021). Investor attention and global market returns during the COVID-19 crisis. International Review of Financial Analysis, 73, 101616.
  47. Statcounter. (2022). Search engine market share Viet Nam. https://gs.statcounter.com/search-engine-market-share/all/viet-nam
  48. Statcounter. (2023). Search engine market share worldwide. https://gs.statcounter.com/search-engine-market-share
  49. State Security Commission of Vietnam. (2022, April 13). Number of investor accounts in Vietnam stock exchange. https://www.ssc.gov.vn
  50. Statista. (2023). Internet usage penetration in Vietnam from 2014 to 2029. https://www.statista.com/forecasts/1137902/internet-penetration-forecast-in-vietnam
  51. Swamy, V., & Munusamy, D. (2019). Investor attention using the Google search volume index—impact on stock returns. Review of Behavioral Finance, 11(1), 56–70.
  52. Takeda, F., & Wakao, T. (2014). Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific-Basin Finance Journal, 27, 1–18. https://doi.org/10.1016/j.pacfin.2014.01.003
  53. Tantaopas, P., Padungsaksawasdi, C., & Treepongkaruna, S. (2016). Attention effect via Internet search intensity in Asia-Pacific stock markets. Pacific-Basin Finance Journal, 38, 107–124.
  54. Vasileiou, E. (2021). Explaining stock markets’ performance during the COVID-19 crisis: Could Google searches be a significant behavioral indicator? Intelligent Systems in Accounting, Finance and Management, 28(3), 173–181.
  55. Vlastakis, N., & Markellos, R. N. (2012). Information demand and stock market volatility. Journal of Banking & Finance, 36(6), 1808–1821. https://doi.org/10.1016/j.jbankfin.2012.02.007
  56. Vo, X. V., & Phan, D. B. A. (2019). Herd behavior and idiosyncratic volatility in a frontier market. Pacific-Basin Finance Journal, 53, 321–330. https://doi.org/10.1016/j.pacfin.2018.10.005
  57. Vorkink, K., DeRosia, E., Christensen, G., & McQueen, G. R. (2010). Advertising, visibility, and stock turnover. https://doi.org/10.2139/ssrn.1572097
  58. Vy Vy. (2021, December 29). Năm 2021: Doanh nghiệp rút lui khỏi thị trường tăng gần 20% vì COVID-19. VnEconomy. https://vneconomy.vn/nam-2021-doanh-nghieprut-lui-khoi-thi-truong-tang-gan-20-vi-covid-19.htm
  59. Zhang, W., Shen, D., Zhang, Y., & Xiong, X. (2013). Open source information, investor attention, and asset pricing. Economic Modelling, 33, 613–619.
DOI: https://doi.org/10.18559/ebr.2024.1.778 | Journal eISSN: 2450-0097 | Journal ISSN: 2392-1641
Language: English
Page range: 30 - 56
Submitted on: Aug 23, 2023
Accepted on: Feb 15, 2024
Published on: Apr 10, 2024
Published by: Poznań University of Economics and Business Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Dang Thi Viet Duc, Nguyen Thu Hoai, Van Phuoc Nguyen, Dang Phong Nguyen, Nguyen Huong Anh, Ho Hong Hai, published by Poznań University of Economics and Business Press
This work is licensed under the Creative Commons Attribution 4.0 License.