Have a personal or library account? Click to login
Determinants of consumer adoption of biometric technologies in mobile financial applications Cover

Determinants of consumer adoption of biometric technologies in mobile financial applications

Open Access
|Apr 2024

References

  1. Agidi, R. Ch. (2018). Biometrics: The future of banking and financial service industry in Nigeria. International Journal of Electronics and Information Engineering, 9(2), 91–105. https://doi.org/10.13140/RG.2.2.23408.92161
  2. Al-Janahi, N., Abd-El-Barr, M., & Qureshi, K. (2021). Evaluation and performance comparison of a model for adoption of biometrics in online banking. Kuwait Journal of Science, 48(2). https://doi.org/10.48129/kjs.v48i2.8800
  3. Alpar, O. (2018). Biometric touchstroke authentication by fuzzy proximity of touch locations. Future Generation Computer Systems, 86, 71–80. https://doi.org/10.1016/j.future.2018.03.030
  4. Amankwaa, A., & McCartney, C. (2020). Gaughran vs the UK and public acceptability of forensic biometrics retention. Science and Justice, 60(3), 204–205. https://doi.org/10.1016/j.scijus.2020.04.001
  5. Baichoo, S., Khan, M. H. M., Bissessur, P., Pavaday, N., Boodoo-Jahangeer, N., & Purmah, N. R. (2018). Legal and ethical considerations of biometric identity card: Case for Mauritius. Computer Law & Security Review, 34(6), 1333–1341. https://doi.org/10.1016/j.clsr.2018.08.010
  6. Bauer, H. H., Barnes, S. J., Reichardt, T., & Neumann, M. M. (2005). Driving consumer acceptance of mobile marketing: A theoretical framework and empirical study. Journal of Electronic Commerce Research, 6(3), 181–192.
  7. Breward, M., Hassanein, K., & Head, M. (2017). Understanding consumers’ attitudes toward controversial information technologies: A contextualization approach. Information Systems Research, 28(4), 760–774. https://doi.org/10.1287/isre.2017.0706
  8. Byun, S., & Byun, S. E. (2013). Exploring perceptions toward biometric technology in service encounters: A comparison of current users and potential adopters. Behaviour & Information Technology, 32(3), 217–230. https://doi.org/10.1080/0144929X.2011.553741
  9. Carpenter, D., McLeod, A., Hicks, Ch., & Maasber, M. (2018). Privacy and biometrics: An empirical examination of employee concerns. Information Systems Frontiers, 20, 91–110. https://doi.org/10.1007/s10796-016-9667-5
  10. Cramer, J. S. (2003). Logit models from economics and other fields. Cambridge University Press.
  11. Dang, V. T., Nguyen, N., Nguyen, H. V., Nguyen, H., Van Huy, L., Tran, V. T., & Nguyen, T. H. (2022). Consumer attitudes toward facial recognition payment: An examination of antecedents and outcomes. International Journal of Bank Marketing, 40(3), 511–535. https://doi.org/10.1108/IJBM-04-2021-0135
  12. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
  13. Dhrymes, P. (2017). Introductory econometrics. Springer. https://doi.org/10.1007/978-3-319-65916-9
  14. Fouad, K. M., Hassan, B. M., & Hassan, M. F. (2016). User authentication based on dynamic keystroke recognition. International Journal of Ambient Computing and Intelligence, 7(2), 1–32. https://doi.org/10.4018/IJACI.2016070101
  15. Ganesh, M. I. (2018, January 25). Data and discrimination: Fintech, biometrics and identity in India. The Society Pages. https://thesocietypages.org/cyborgology/2018/01/25/fintech-aadhaar-and-identity-in-india/
  16. Garrido, F., Reascos, I., Alvarez, F., & Lanchimba, A. (2024). Effects of facial biometric system at Universidad Técnica del Norte, Ecuador: An analysis using the Technology Acceptance Model (TAM). SN Computer Science, 5(50), 1–11. https://doi.org/10.1007/s42979-023-02418-4
  17. Gomez-Barrero, M., & Galbally, J. (2020). Reversing the irreversible: A survey on inverse biometrics. Computers & Security, 90, 101700. https://doi.org/10.1016/j.cose.2019.101700
  18. Hino, H. (2015). Assessing factors affecting consumers’ intention to adopt biometric authentication technology in e-shopping. Journal of Internet Commerce, 14(1), 1–20. https://doi.org/10.1080/15332861.2015.1006517
  19. Huterska, A., Piotrowska, A. I., & Szalacha-Jarmużek, J. (2021). Fear of the COVID-19 pandemic and social distancing as factors determining the change in consumer payment behavior at retail and service outlets. Energies, 14(14), 4191. https://doi.org/10.3390/en14144191
  20. Jeddy, N., Radhika, T., & Nithya, S. (2017). Tongue prints in biometric authentication: A pilot study. Journal of Oral and Maxillofacial Pathology, 21(1), 176–179. https://doi.org/10.4103/jomfp.JOMFP_185_15
  21. Jünger, M., & Mietzner, M. (2020). Banking goes digital: The adoption of FinTech services by German households. Finance Research Letters, 34, 101260. https://doi.org/10.1016/j.frl.2019.08.008
  22. Kagerbauer, M., Manz, W., & Zumkeller, D. (2013). Analysis of PAPI, CATI, and CAWI methods for a multiday household travel survey. In J. Zmud, M. Lee-Gosselin, M. Munizaga, & J. A. Carrasco (Eds.), Transport surveys methods: Best practice for decision making (pp. 289–304). Emerald Group Publishing Ltd.
  23. Kim, J. H., Song, W. K., & Lee, H. C. (2023). Exploring the determinants of travelers’ intention to use the airport biometric system: A Korean case study. Sustainability, 15, 14129. https://doi.org/10.3390/su151914129
  24. Kim, J. S., Brewer, P., & Bernhard, B. (2008). Hotel customer perceptions of biometric door locks: Convenience and security factors. Journal of Hospitality & Leisure Marketing, 17(1–2), 162–183. https://doi.org/10.1080/10507050801978323
  25. Kim, M., Kim, S., & Kim, J. (2019). Can mobile and biometric payments replace cards in the Korean offline payments market? Consumer preference analysis for payment systems using a discrete choice model. Telematics and Informatics, 38, 46–58. https://doi.org/10.1016/j.tele.2019.02.003
  26. Kindt, E. J. (2018). Having yes, using no? About the new legal regime for biometric data. Computer Law & Security Review, 34(3), 523–538. https://doi.org/10.1016/j.clsr.2017.11.004
  27. Kochaniak, K., & Ulman, P. (2020). Risk-intolerant but risk-taking—towards a better understanding of inconsistent survey responses of the euro area households. Sustainability, 12(17), 6912. https://doi.org/10.3390/su12176912
  28. Kufel, T. (2011). Ekonometria. Rozwiązywanie problemów z wykorzystaniem programu Gretl. Wydawnictwo Naukowe PWN.
  29. Kumari, P., & Seeja, K. R. (2022). Periocular biometrics: A survey. Journal of King Saud University – Computer and Information Sciences, 34(4), 1086–1097. https://doi.org/10.1016/j.jksuci.2019.06.003
  30. Liébana-Cabanillas, F., Muñoz-Leiva, F., Molinillo, S., & Higueras-Castillo, E. (2022). Do biometric payment systems work during the COVID-19 pandemic? Insights from the Spanish users’ viewpoint. Financial Innovation, 8(22). https://doi.org/10.1186/s40854-021-00328-z
  31. Liu, Z., Ben, S., Zhang, R. (2019). Factors affecting consumers’ mobile payment behavior: A meta-analysis. Electronic Commerce Research, 19, 575–601. https://doi.org/10.1007/s10660-019-09349-4
  32. Lumini, A., & Nanni, L. (2017). Overview of the combination of biometric matchers. Information Fusion, 33, 71–85. https://doi.org/10.1016/j.inffus.2016.05.003
  33. Maddala, G. S. (1992). Introduction to econometrics (2nd ed.). Macmillan Publishing Company.
  34. Mastercard. (2018). A Mastercard market intelligence report. Biometrics: Meeting the challenge of authentication and payments technology. https://www.master-card.us/content/dam/public/mastercardcom/na/us/en/documents/biometrics_updated_030619.pdf
  35. Miltgen, C. L., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support Systems, 56, 103–114. https://doi.org/10.1016/j.dss.2013.05.010
  36. Morosan, C. (2011). Customers’ adoption of biometric systems in restaurants: An extension of the Technology Acceptance Model. Journal of Hospitality Marketing & Management, 20(6), 661–690. https://doi.org/10.1080/19368623.2011.570645
  37. Morosan, C. (2012). Theoretical and empirical considerations of guests’ perceptions of biometric systems in hotels: Extending the technology acceptance model. Journal of Hospitality & Tourism Research, 36(1), 52–84. https://doi.org/10.1177/1096348010380601
  38. Mróz-Gorgoń, B., Wodo, W., Andrych, A., Caban-Piaskowska, K., & Kozyra, C. (2022). Biometrics innovation and payment sector perception. Sustainability, 14(15), 9424. https://doi.org/10.3390/su14159424
  39. Nakisa, B., Ansarizadeh, F., Oommen, P., & Kumar, R. (2023). Using an extended technology acceptance model to investigate facial authentication. Telematics and Informatics Reports, 12, 100099. https://doi.org/10.1016/j.teler.2023.100099
  40. Nakisa, B., Ansarizadeh, F., Oommen, P., & Shrestha, S. (2022). Technology Acceptance Model: A case study of Palm Vein authentication technology. IEEE Access, 10, 120436–120449. https://doi.org/10.1109/ACCESS.2022.3221413
  41. Nguyen, K., Fookes, C., Sridharan, S., Tistarelli, M., & Nixon, M. (2018). Super-resolution for biometrics: A comprehensive survey. Pattern Recognition, 78, 23–42. https://doi.org/10.1016/j.patcog.2018.01.002
  42. Norfolk, L., & O’Regan, M. (2021) Biometric technologies at music festivals: An extended technology acceptance model. Journal of Convention & Event Tourism, 22(1), 36–60. https://doi.org/10.1080/15470148.2020.1811184
  43. Ogbanufe, O., & Kim, D. J. (2018). Comparing fingerprint-based biometrics authentication versus traditional authentication methods for e-payment. Decision Support Systems, 106, 1–14. https://doi.org/10.1016/j.dss.2017.11.003
  44. Piotrowska, A. I., Polasik, M., & Piotrowski, D. (2017). Prospects for the application of biometrics in the Polish banking sector. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(3), 485–502. https://doi.org/10.24136/eq.v12i3.27
  45. Piotrowski, D. (2022). ICTs in the banking sector in the times of the COVID-19 pandemic: The customer’s perspective. Ekonomia i Prawo. Economics and Law, 21(3), 603–622. https://doi.org/10.12775/EiP.2022.032
  46. Polasik, M., Wisniewski, T. P., & Lightfoot, G. (2012). Modelling customers’ intentions to use contactless cards. International Journal of Banking, Accounting and Finance, 4(3), 203–231. https://doi.org/10.1504/IJBAAF.2012.051590
  47. Prince, J. T., & Wallsten, S. (2022). How much is privacy worth around the world and across platforms? Journal of Economics & Management Strategy, 31(4), 841–861. https://doi.org/10.1111/jems.12481
  48. Raj, L. V., Amilan, S., & Aparna, K. (2023). Factors influencing the adoption of cashless transactions: Toward a unified view. South Asian Journal of Marketing. https://doi.org/10.1108/sajm-11-2022-0071
  49. Rio, J. S., Moctezuma, D., Conde, C., de Diego, I. M., & Cabello, E. (2016). Automated border control e-gates and facial recognition systems. Computers & Security, 62, 49–72. https://doi.org/10.1016/j.cose.2016.07.001
  50. Sadhya, D., & Singh, S. K. (2017). Providing robust security measures to Bloom filter based biometric template protection schemes. Computers & Security, 67, 59–72. https://doi.org/10.1016/j.cose.2017.02.013
  51. Sanchez-Reillo, R., Ortega-Fernandez, I., Ponce-Hernandez, W., & Quiros-Sandoval, H. C. (2019). How to implement EU data protection regulation for R&D in biometrics. Computer Standards & Interfaces, 61, 89–96. https://doi.org/10.1016/j.csi.2018.01.007
  52. Singh, M., Singh, R., & Ross, A. (2019). A comprehensive overview of biometric fusion. Information Fusion, 52, 187–205. https://doi.org/10.1016/j.inffus.2018.12.003
  53. Sleiman, K. A. A., Juanli, L., Lei, H. Z., Rong, W., Yubo, W., Li, S., Cheng, J., & Amin, F. (2023). Factors that impacted mobile-payment adoption in China during the COVID-19 pandemic. Heliyon, 9(5), e16197. https://doi.org/10.1016/j.heliyon.2023.e16197
  54. Soh, K. L., Wong, W. P., & Chan, K. L. (2010). Adoption of biometric technology in online applications. International Journal of Business and Management Science, 3(2), 121–146.
  55. Soto-Beltrán, L. L., Robayo-Pinzón, O. J., & Rojas-Berrio, S. P. (2022). Effects of perceived risk on intention to use biometrics in financial products: Evidence from a developing country. International Journal of Business Information Systems, 39(2), 170–192.
  56. Štitilis, D., & Laurinaitis M. (2017). Treatment of biometrically processed personal data: Problem of uniform practice under EU personal data protection law. Computer Law & Security Review, 33, 618–628. https://doi.org/10.1016/j.clsr.2017.03.012
  57. Sun, Y., Li, H., & Li, N. (2023). A novel cancelable fingerprint scheme based on random security sampling mechanism and relocation bloom filter. Computers & Security, 125, 103021. https://doi.org/10.1016/j.cose.2022.103021
  58. Tassabehji, R., & Kamala, M. A. (2012). Evaluating biometrics for online banking: The case for usability. International Journal of Information Management, 32(5), 489–494. https://doi.org/10.1016/j.ijinfomgt.2012.07.001
  59. Tovarek, J., Voznak, M., Rozhon, J., Rezac, F., Safarik, J., & Partila, P. (2018). Different approaches for face authentication as part of a multimodal biometrics system. Advances in Electrical and Electronic Engineering, 16(1), 118–124. https://doi.org/10.15598/aeee.v16i1.2547
  60. Trawnih, A. A., Al-Adwan, A. S., Yaseen, H., & Al-Rahmi, W. M. (2023). Determining perceptions of banking customers regarding fingerprint ATMs. Information Development, 0(0). https://doi.org/10.1177/02666669231194360
  61. Unar, J. A., Seng, W. C., & Abbasi, A. (2014). A review of biometric technology along with trends and prospects. Pattern Recognition, 47, 2673–2688. https://doi.org/10.1016/j.patcog.2014.01.016
  62. van der Cruijsen, C., Hernández, L., & Jonker, N. (2017). In love with the debit card but still married to cash. Applied Economics, 49(30), 2989–3004. https://doi.org/10.1080/00036846.2016.1251568
  63. Wahid, L. O. A., & Pratama, A. L. (2022). Factors influencing smartphone owners’ acceptance of biometric authentication methods. ILKOM Jurnal Ilmiah, 14(2), 91–98. https://doi.org/10.33096/ilkom.v14i2.1114.91-98
  64. Wang, J. S. (2021). Exploring biometric identification in FinTech applications based on the modified TAM. Financial Innovation, 7(42). https://doi.org/10.1186/s40854-021-00260-2
  65. Wang, J. S. (2023). Verification techniques in FinTech compared from user perspectives. Social Science Computer Review, 41(4), 1438–1455. https://doi.org/10.1177/08944393211058310
  66. Wang, K., Yang, G., Huang, Y., & Yin, Y. (2020). Multi-scale differential feature for ECG biometrics with collective matrix factorization. Pattern Recognition, 102, 107211. https://doi.org/10.1016/j.patcog.2020.107211
  67. Wang, M., Hu, J., & Abbass, H. A. (2020). BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs. Pattern Recognition, 105, 107381. https://doi.org/10.1016/j.patcog.2020.107381
  68. Wnuk, A., Oleksy, T, & Maison, D. (2020). The acceptance of COVID-19 tracking technologies: The role of perceived threat, lack of control, and ideological beliefs. PLoS ONE, 15(9), e0238973. https://doi.org/10.1371/journal.pone.0238973
  69. Yu, J., Sun, K., Gao, F., & Zhu, S. (2018). Face biometric quality assessment via light CNN. Pattern Recognition Letters, 107, 25–32. https://doi.org/10.1016/j.patrec.2017.07.015
  70. Zhang, D., Liu, Z., & Yan, J. (2010). Dynamic tongueprint: A novel biometric identifier. Pattern Recognition, 43(3), 1071–1082. https://doi.org/10.1016/j.patcog.2009.09.002
  71. Zhang, Y., Huang, Y., Wang, L., & Yu, S. (2019). A comprehensive study on gait biometrics using a joint CNN-based method. Pattern Recognition, 93, 228–236. https://doi.org/10.1016/j.patcog.2019.04.023
  72. Zhao, Y., & Bacao, F. (2021). How does the pandemic facilitate mobile payment? An investigation on users’ perspective under the COVID-19 pandemic. International Journal of Environmental Research and Public Health, 18(3), 1016. https://doi.org/10.3390/ijerph18031016
DOI: https://doi.org/10.18559/ebr.2024.1.1019 | Journal eISSN: 2450-0097 | Journal ISSN: 2392-1641
Language: English
Page range: 81 - 100
Submitted on: Oct 27, 2023
Accepted on: Mar 3, 2024
Published on: Apr 10, 2024
Published by: Poznań University of Economics and Business Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Anna Iwona Piotrowska, published by Poznań University of Economics and Business Press
This work is licensed under the Creative Commons Attribution 4.0 License.