Have a personal or library account? Click to login
Pricing and data science: The tale of two accidentally parallel transitions Cover

Pricing and data science: The tale of two accidentally parallel transitions

By: Jacek Wallusch  
Open Access
|Jul 2023

References

  1. d’Alessandro, B., O’Neil, C., & LaGatta, T. (2017). Conscientious classification: A data scientist’s guide to discrimination—Aware classification. Big Data, 5(2), 120–134.
  2. Baer, T. (2019). Understand, manage, and prevent algorithmic bias: A guide for business users and data scientists. Apress.
  3. Barocas, S., & Boyd, D. (2017), Computing ethics. Engaging the ethics of data science in practice. Seeking more common ground between data scientists and their critics. Communications of the ACM, 60(11), 23–25.
  4. Baumgartner, J., Glatzer, E., Rumler, F., & Stiglbauer, A. (2005) How frequently do consumer prices change in Austria? Evidence from micro CPI data. Working Paper, 101. Oesterreichische National Bank, Vienna, Austria.
  5. Bils, M., & Klenov, P. J. (2004). Some evidence on the importance of sticky prices. Journal of Political Economy, 112, 947–985.
  6. Christen, T., Hess, M., Grichnik, D., & Wincent, J. (2022). Value-based pricing in digital platforms: A machine learning approach to signaling beyond core product attributes in cross-platform settings. Journal of Business Research, 152, 82–92.
  7. Coenen, G., Levin, A. T., & Christoffel, K. (2007). Identifying the influences of nominal and real rigidities in aggregate price-setting behavior. Journal of Monetary Economics, 54, 2439–2466.
  8. Day, G. S. (1994). The capabilities of market-driven organizations. Journal of Marketing, 58(4), 37–52.
  9. Dutta, S., Zbaracki, M. J., & Bergen, M. (2003). Pricing process as a capability: A resource-based perspective. Strategic Management Journal, 24(7), 615–630.
  10. Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
  11. Füreder, R., Maier, Y., & Yaramova, A. (2014). Value-based pricing in Austrian medium-sized companies. Strategic Management, 19(4), 13–19.
  12. Giffen, van, B., Herhausen, D., & Fahse, T. (2022). Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods. Journal of Business Research, 144, 93–106.
  13. Hinterhuber, A. (2008). Customer value-based pricing strategies: Why companies resist. Journal of Business Strategy, 29(4), 41–50.
  14. Hinterhuber, A., Liozu, S. M. (2018). Thoughts: Premium pricing in B2C and B2B. Journal of Revenue and Pricing Management, 17(4), 301–305.
  15. Hinterhuber, A., Snelgrove, T. C., & Stensson, B. I. (2021). Value first, then price: The new paradigm of B2B buying and selling. Journal of Revenue and Pricing Management, 20(1), 403–409.
  16. Jedidi, K., & Jagpal, S. (2009). Willingness to pay: Measurement and managerial implications. In V. R. Rao (Ed.), Handbook of pricing research in marketing (pp. 37–60). Edward Elgar.
  17. Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J. (2012, September 24-28). Fairness-aware classifier with prejudice remover regularizer. European Conference, ECML PKDD: Machine learning and knowledge discovery in databases. Bristol. United Kingdom.
  18. Kienzler, M. (2023). Value-based pricing and cognitive biases: An overview for business markets. Industrial Marketing Management (in press).
  19. Korinek, A. (2023). Language models and cognitive automation for economic research. NBER Working Paper, 30957. Mimeo.
  20. Liozu, S. M., & Hinterhuber, A. (2013). Pricing orientation, pricing capabilities, and firm performance. Management Decision, 51(3), 594–614.
  21. Lünemann, P., & Mathä, T. Y. (2005). Nominal rigidities and inflation persistence in Luxembourg: A comparison with EU15 member countries with particular focus on services and regulated prices. Working Paper, 14. Luxembourg.
  22. Mora Cortez, R., & Hidalgo, P. (2022). Prioritizing B2B marketing capabilities: Crossvergence in advanced and emerging economies. Industrial Marketing Management, 105, 422–438.
  23. Möller, K., & Anttila, M. (1987). Marketing capability—A key success factor in small business? Journal of Marketing Management, 3(2), 185–203.
  24. Raja, J. Z., Frandsen, T., Kowalkowski, C., & Jarmatz, M. (2020). Learning to discover value: Value-based pricing and selling capabilities for services and solutions. Journal of Business Research, 114, 142–159.
  25. Steinbrenner, F. (2020). Emerging supplementary trends to value-based pricing—A future outlook. International Journal of Management, Technology and Engineering, 10(11), 50–54.
  26. Steinbrenner, F., & Turčínková, J. (2021). The value-based pricing determination matrix for pricing method selection. Central European Business Review, 10(4), 99–123.
  27. Töytäri, P., Rajala, R., & Brashear Alejandro, T. (2015). Organizational and institutional barriers to value-based pricing in industrial relationships. Industrial Marketing Management, 47, 53–64.
  28. Vorhies, D. W., Harker, M., & Rao, C. P. (1999). The capabilities and performance advantages of market-driven firms. European Journal of Marketing, 33(11), 1171–1202.
  29. Winston, W. L., Nestler, S., & Pelechrinis, K. (2022). Mathletics. How gamblers, managers, and fans use mathematics in sports (2nd ed.). Princeton University Press.
  30. Woodruff, R. B. (1997). Customer value: The next source for competitive advantage. Journal of the Academy of Marketing Science, 25(2), 139–153.
DOI: https://doi.org/10.18559/ebr.2023.2.739 | Journal eISSN: 2450-0097 | Journal ISSN: 2392-1641
Language: English
Page range: 115 - 132
Submitted on: Apr 30, 2023
Accepted on: Jun 16, 2023
Published on: Jul 26, 2023
Published by: Poznań University of Economics and Business Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Jacek Wallusch, published by Poznań University of Economics and Business Press
This work is licensed under the Creative Commons Attribution 4.0 License.