Have a personal or library account? Click to login
How Google Trends can improve market predictions— the case of the Warsaw Stock Exchange Cover

How Google Trends can improve market predictions— the case of the Warsaw Stock Exchange

Open Access
|Jul 2022

References

  1. Algaba, A., Borms, S., Boudt, K., & Van Pelt, J. (2020, July 3). The Economic Policy Uncertainty Index for Flanders, Wallonia and Belgium. SSRN Electronic Journal, 6, 1–16. https://doi.org/10.2139/ssrn.3580000
  2. Ali, B. J. (2020). Impact of COVID-19 on consumer buying behavior toward online shopping in Iraq. Economic Studies Journal, 18(42), 267–280. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3729323
  3. Aljanabi, A. R. A. (2021). The impact of economic policy uncertainty, news framing and information overload on panic buying behavior in the time of COVID-19: A conceptual exploration. International Journal of Emerging Markets. https://doi.org/10.1108/IJOEM-10-2020-1181
  4. Anghinoni, L., Zhao, L., Ji, D., & Pan, H. (2019). Time series trend detection and forecasting using complex network topology analysis. Neural Networks, 117, 295–306. http://doi.org/10.1016/j.neunet.2019.05.01810.1016/j.neunet.2019.05.018
  5. Appel, G., Grewal, L., Hadi, R., & Stephen, A. T. (2020). The future of social media in marketing. Journal of the Academy of Marketing Science, 48(1), 79–95. https://doi.org/10.1007/s11747-019-00695-1
  6. Baker, S., Bloom, N., & Davis, S. (2016). Measuring economic policy uncertainty. Quarterly Journal of Economics, 131(4), 1593–1636. https://doi.org/10.1093/qje/qjw024
  7. Bar-Ilan, J., & Gutman, T. (2005). How do search engines respond to some non-English queries? Journal of Information Science, 31(1), 13–28. https://doi.org/10.1177/0165551505049255
  8. Bergman, M. U., & Worm, C. H. (2021). Economic Policy Uncertainty and consumer perceptions: The Danish case. Retrieved from https://www.researchgate.net/publication/343832963_Economic_Policy_Uncertainty_and_Consumer_Perceptions_The_Danish_Case
  9. Bloom, N. (2009). The impact of uncertainty shocks. Econometrica, 77(3), 623–685. https://doi.org/10.3982/ecta6248
  10. Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88(1), 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
  11. Colliri, T., & Zhao, L. (2019). A network-based model for optimizing returns in the stock market. (2019 8th Brazilian Conference on Intelligent Systems (BRACIS), IEEE). http://doi.org/10.1109/BRACIS.2019.0011810.1109/BRACIS.2019.00118
  12. Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. Journal of Finance, 66(5), 1461–1499. https://doi.org/10.1111/j.1540-6261.2011.01679.x
  13. Depoux, A., Martin, S., Karafillakis, E., Preet, R., Wilder-Smith, A., & Larson, H. (2020). The pandemic of social media panic travels faster than the COVID-19 outbreak. Journal of Travel Medicine, 27(3). http://doi.org/10.1093/jtm/taaa03110.1093/jtm/taaa031
  14. Dickey, D. A., & Fuller, W. A. (1979) Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431, http://doi.org/10.1080/01621459.1979.1048253110.1080/01621459.1979.10482531
  15. Ding, X., Zhang, Y., Liu, T., & Duan, J. (2014). Using structured events to predict stock price movement: An empirical investigation. (2014 Conference on Empirical Methods in Natural Language Processing EMNLP), 1415–1425). http://doi.org/10.3115/v1/D14-114810.3115/v1/D14-1148
  16. Fuller, W. A. (1996). Introduction to statistical time series. New York: John Wiley & Sons. http://doi.org/10.1002/978047031691710.1002/9780470316917
  17. Gałązka, M. (2011). Characteristics of the Polish Stock Market correlations. International Review of Financial Analysis, 20(1), 1–5. http://doi.org/10.1016/j.irfa.2010.11.00210.1016/j.irfa.2010.11.002
  18. Gera, I., & London, A. (2019). Portfolio selection based on a configuration model and hierarchical clustering for asset graphs. (Proceedings of the MATCOS 2019, 39‒42).
  19. Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., & Watts, D. J. (2010). Predicting consumer behavior with web search. (Proceedings of the National Academy of Sciences of the United States of America, 107(41), 17486–17490). https://doi.org/10.1073/pnas.1005962107
  20. Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3). http://doi.org/10.2307/191279110.2307/1912791
  21. Gruhl, D., Guha, R., Kumar, R., Novak, J., & Tomkins, A. (2005). The predictive power of online chatter. (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 78–87). https://doi.org/10.1145/1081870.1081883
  22. Gusev, M., Kroujiline, D., Govorkov, B., Sharov, S. V., Ushanov, D., & Zhilyaev, M. (2015). Predictable markets? A news-driven model of the stock market. Algorithmic Finance, 4(1–2), 5–51. https://doi.org/10.3233/AF-150042
  23. Hołda, M. (2019). Newspaper-based economic uncertainty indices for Poland. (NBP Working Papers No. 310, 1–49). Retrieved from https://ideas.repec.org/p/nbp/nbpmis/310.html
  24. Hu, H., Tang, L., Zhang, S., & Wang, H. (2018). Predicting the direction of stock markets using optimized neural networks with Google Trends. Neurocomputing, 285, 188–195. https://doi.org/10.1016/j.neucom.2018.01.038
  25. Huang, M. Y., Rojas, R. R., & Convery, P. D. (2019). Forecasting stock market movements using Google Trend searches. Empirical Economics, 59, 2821–2839. https://doi.org/10.1007/s00181-019-01725-1
  26. Jun, S. P., Yoo, H. S., & Choi, S. (2018). Ten years of research change using Google Trends: From the perspective of big data utilizations and applications. Technological Forecasting and Social Change, 130, 69–87. https://doi.org/10.1016/j.techfore.2017.11.009
  27. Karanasos, M., Yfanti, S., & Hunter, J. (2021). Emerging stock market volatility and economic fundamentals: The importance of US uncertainty spillovers, financial and health crises. Annals of Operations Research, 313, 1077‒1116. https://doi.org/10.1007/s10479-021-04042-y
  28. Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1–3), 159–178. http://doi.org/10.1016/0304-4076(92)90104-Y10.1016/0304-4076(92)90104-Y
  29. Liu, H. (2018). Leveraging financial news for stock trend prediction with attention-based recurrent neural network. Retrieved from https://arxiv.org/abs/1811.06173
  30. Liu, J., Chao, F., Lin, Y., & Lin, C. (2019). Stock prices prediction using deep learning models. Retrieved from https://arxiv.org/abs/1909.12227
  31. Lütkepohl, H. (2015). New introduction to multiple time series analysis. Berlin, Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-540-27752-1
  32. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133. https://doi.org/10.1016/j.knosys.2015.12.022
  33. Moat, H. S., Curme, C., Avakian, A., Kenett, D. Y., Eugene Stanley, H., & Preis, T. (2013). Quantifying Wikipedia usage patterns before stock market moves. Scientific Reports, 3, 1801. https://doi.org/10.1038/srep01801
  34. Patil, P., Wu, C. S. M., Potika, K., & Orang, M. (2020). Stock market prediction using ensemble of graph theory, machine learning and deep learning models. (Proceedings of the 3rd International Conference on Software Engineering and Information Management. ACM, 85–92). http://doi.org/10.1145/3378936.337897210.1145/3378936.3378972
  35. Podsiadlo, M., & Rybinski, H. (2016). Financial time series forecasting using rough sets with time-weighted rule voting. Expert Systems with Applications, 66(30) 219–233. http://doi.org/10.1016/j.eswa.2016.08.06610.1016/j.eswa.2016.08.066
  36. Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific Reports, 3, 1684. https://doi.org/10.1038/srep01684
  37. Simon, B. H. A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics, 69(1), 99–118. http://doi.org/10.2307/188485210.2307/1884852
  38. Sorić, P., & Lolić, I. (2017). Economic uncertainty and its impact on the Croatian economy. Public Sector Economics, 41(4), 443–477. https://doi.org/10.3326/pse.41.4.3
  39. Tan, S. D., & Tas, O. (2021). Social media sentiment in international stock returns and trading activity. Journal of Behavioral Finance, 22(2), 221–234. https://doi.org/10.1080/15427560.2020.1772261
  40. Ticknor, J. L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501–5506. http://doi.org/10.1016/j.eswa.2013.04.01310.1016/j.eswa.2013.04.013
  41. Zebrowska-Suchodolska, D., Karpio, A., & Kompa, K. (2021). COVID-19 pandemic: Stock markets situation in European Ex-communist countries. European Research Studies Journal, 24(3), 1106–1128. https://doi.org/10.35808/ersj/2408
DOI: https://doi.org/10.18559/ebr.2022.2.2 | Journal eISSN: 2450-0097 | Journal ISSN: 2392-1641
Language: English
Page range: 7 - 28
Submitted on: Nov 23, 2021
Accepted on: Jun 25, 2022
Published on: Jul 18, 2022
Published by: Poznań University of Economics and Business Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Paweł Kropiński, Marcin Anholcer, published by Poznań University of Economics and Business Press
This work is licensed under the Creative Commons Attribution 4.0 License.