Have a personal or library account? Click to login
Small area quantile estimation based on distribution function using linear mixed models Cover

Small area quantile estimation based on distribution function using linear mixed models

Open Access
|Jul 2021

References

  1. Basuki, Widyanti, R., & Rajiani, I. (2021). Nascent entrepreneurs of millennial generations in the emerging market of Indonesia. Entrepreneurial Business and Economics Review, 9(2), 151-165.10.15678/EBER.2021.090210
  2. Beil, S., Kolb, J. P., & Münnich, R. (2011). Policy use of Laeken indicators. (Proceedings of the New Techniques and Technologies for Statistics 2011). Brussels, Belgium. https://doi.org/10.13140/2.1.4027.7764
  3. Berger, Y. G., & Muñoz, J. F. (2015). On estimating quantiles using auxiliary information. Journal of Official Statistics, 31(1), 101-119. https://doi.org/10.1515/JOS-2015-000510.1515/jos-2015-0005
  4. Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5), 1190-1208. https://doi.org/10.1137/091606910.1137/0916069
  5. Chambers, R. L., & Dunstan, R. (1986). Estimating distribution functions from survey data. Biometrika, 73(3), 597-604. https://doi.org/10.2307/233652410.2307/2336524
  6. Chwila, A., & Żądło, T. (2020). On the choice of the number of Monte Carlo iterations and bootstrap replicates in Empirical Best Prediction. Statistics in Transition, 21(2), 35-60. https://doi.org/10.21307/stattrans-2020-01310.21307/stattrans-2020-013
  7. Dorfman, A. H. (2009). Inference on distribution functions and quantiles. In D. Pfeffermann & C. R. Rao (Eds.), Handbook of statistics. Volume 29B Sample Surveys: Inference and Analysis (pp. 371-395). Amsterdam: Elsevier.
  8. Hajek, J. (1971) Comment on an essay on the logical foundations of survey sampling by Basu D. In V.P. Godambe & D.A. Sprott (Eds.), Foundations of statistical inference (pp. 36). Holt: Rinehart and Winston.
  9. Kuk, A. Y. C., & Mak, T. K. (1989). Median estimation in the presence of auxiliary information. Journal of the Royal Statistical Society: Series B (Methodological), 51(2), 261-269. https://doi.org/10.1111/j.2517-6161.1989.tb01763.x10.1111/j.2517-6161.1989.tb01763.x
  10. Mazurek, G., Korzyński, P., & Górska, A. (2019). Social media in the marketing of higher education institutions in Poland: Preliminary empirical studies. Entrepreneurial Business and Economics Review, 7(1), 117-133. https://doi.org/10.15678/EBER.2019.07010710.15678/EBER.2019.070107
  11. McGrath, S., Sohn, H., Steele, R., & Benedetti, A. (2019). Meta-analysis of the difference of medians. Biometrical Journal, 69(2), 69-98.
  12. Mihi-Ramirez, A., Arteaga-Ortíz, J., & Ojeda-González, S. (2019). The international movements of capital and labour: A study of foreign direct investment and migration flows. Entrepreneurial Business and Economics Review, 7(3), 143-160. https://doi.org/10.15678/EBER.2019.07030810.15678/EBER.2019.070308
  13. Molina, I., & Rao, J. N. K. (2010). Small area estimation of poverty indicators. The Canadian Journal of Statistics, 38, 369–385. https://doi.org/10.1002/cjs.1005110.1002/cjs.10051
  14. Osier, G. (2009). Variance estimation for complex indicators of poverty and inequality using linearization techniques. Journal of the European Survey Research Association, 3, 167-195. https://doi.org/10.18148/srm/2009.v3i3.369
  15. R Core Team. (2020). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
  16. Rao, J. N. K., & Molina, I. (2015). Small area estimation. Hoboken: John Wiley & Sons.10.1002/9781118735855
  17. Ren, R., & Chambers, R. (2003). Outlier robust imputation of survey data via reverse calibration. (S3RI Methodology Working Papers No. M03/19). Southampton: Southampton Statistical Sciences Research Institute.
  18. Rueda, M., & Arcos, A. (2001). On estimating the median from survey data using multiple auxiliary information. Metrika, 54, 59-76. https://doi.org/10.1007/s00184010011610.1007/s001840100116
  19. Rueda, M., Martinez, S., Martinez, H., & Arcos, A. (2007). Estimation of the distribution function with calibration methods. Journal of Statistical Planning and Inference, 137(2), 435-448. https://doi.org/10.1016/j.jspi.2005.12.01110.1016/j.jspi.2005.12.011
  20. Salvati, N., Chandra, H., & Chambers, R. (2012). Model-based direct estimation of small-area distributions. Australian & New Zealand Journal of Statistics, 54(1), 103-123. https://doi.org/10.1111/j.1467-842X.2012.00658.x10.1111/j.1467-842X.2012.00658.x
  21. Särndal, C. E., Swenson, B., & Wretman, J. (1992). Model assisted survey sampling. New York: Springer-Verlag.10.1007/978-1-4612-4378-6
  22. Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York: John Wiley & Sons.10.1002/9780470316481
  23. Silva, N., & Skinner, C. J. (1995). Estimating distribution functions with auxiliary information using poststratification. Journal of Official Statistics, 11(3), 277-294.
  24. Stachurski, T. (2018). A simulation analysis of the accuracy of median estimators for different sampling designs. In L. Vachova, V. Kratochvil (Eds.), Conference proceedings: 36th International Conference Mathematical Methods in Economics. MME 2018 (pp. 50-514). Praha: MatfyzPress.
  25. Tzavidis, N., Marchetti, S., & Chambers, R. (2010). Robust estimation of small area means and quantiles. Australian & New Zealand Journal of Statistics, 52(2), 167-186. https://doi.org/10.1111/j.1467-842X.2010.00572.x10.1111/j.1467-842X.2010.00572.x
  26. Vijay, V., & Betti, G. (2011). Taylor linearization sampling errors and design effects for poverty measures and other complex statistics. Journal of Applied Statistics, 38(8), 1549-1576. https://doi.org/10.1080/02664763.2010.51567410.1080/02664763.2010.515674
DOI: https://doi.org/10.18559/ebr.2021.2.7 | Journal eISSN: 2450-0097 | Journal ISSN: 2392-1641
Language: English
Page range: 97 - 114
Submitted on: Jan 18, 2021
Accepted on: Jun 25, 2021
Published on: Jul 20, 2021
Published by: Poznań University of Economics and Business Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Tomasz Stachurski, published by Poznań University of Economics and Business Press
This work is licensed under the Creative Commons Attribution 4.0 License.