Have a personal or library account? Click to login
Repeated weighting in mixed-mode censuses Cover
Open Access
|Apr 2021

References

  1. Boonstra, H. (2004). A simulation study of repeated weighting estimation. Voorburg/Heerlen: Statistics Netherlands.
  2. Boonstra, H., van den Brakel, J., Knottnerus, P., Nieuwenbroek, N., & Renssen, R. (2003). Dacseis deliverable 7.2: A strategy to obtain consistency among tables of survey estimates. Heerlen: Statistics Netherlands.
  3. Chambers, R., & Diniz da Silva, A. (2020). Improved secondary analysis of linked data: A framework and an illustration. Journal of the Royal Statistical Society: Series A (Statistics in Society), 183(1), 37-59.10.1111/rssa.12477
  4. De Waal, T. (2016). Obtaining numerically consistent estimates from a mix of administrative data and surveys. Statistical Journal of the IAOS, 32(2), 231-243.10.3233/SJI-150950
  5. De Waal, T., van Delden, A., & Scholtus, S. (2020). Multi-source statistics: Basic situations and methods. International Statistical Review, 88(1), 203-228.10.1111/insr.12352
  6. Deville, J.-C., & Särndal, C.-E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87(418), 376-382.10.1080/01621459.1992.10475217
  7. Harron, K., Goldstein, H., & Dibben, C. (2015). Methodological developments in data linkage. Hoboken: John Wiley & Sons.10.1002/9781119072454
  8. Haziza, D., & Lesage, É. (2016). A discussion of weighting procedures for unit nonresponse. Journal of Official Statistics, 32(1), 129-145.10.1515/jos-2016-0006
  9. Houbiers, M. (2004). Towards a social statistical database and unified estimates at Statistics Netherlands. Journal of Official Statistics, 20(1), 55.
  10. Houbiers, M., Knottnerus, P., Kroese, A., Renssen, R., & Snijders, V. (2003). Estimating consistent table sets: Position paper on repeated weighting. (Statistics Netherlands, Discussion Paper, No. 3005).
  11. Kalton, G., & Flores-Cervantes, I. (2003). Weighting methods. Journal of Official Statistics, 19(2), 81.
  12. Knottnerus, P., & van Duin, C. (2006). Variances in repeated weighting with an application to the dutch labour force survey. Journal of Official Statistics, 22(3), 565.
  13. Kott, P. S. (2006). Using calibration weighting to adjust for nonresponse and coverage errors. Survey Methodology, 32(2), 133.
  14. Kott, P. S., & Chang, T. (2010). Using calibration weighting to adjust for nonignorable unit nonresponse. Journal of the American Statistical Association, 105(491), 1265-1275.10.1198/jasa.2010.tm09016
  15. Kroese, A., & Renssen, R. (1999). Weighting and imputation at Statistics Netherlands. (Proceedings of the IASS conference on Small Area Estimation, Riga August 1999, 109-120).
  16. Lundström, S., & Särndal, C.-E. (1999). Calibration as a standard method for treatment of nonresponse. Journal of Official Statistics, 15(2), 305.
  17. Luppes, M., & Nielsen, P. B. (2020). Micro data linking: Addressing new emerging topics without increasing the respondent burden. Statistical Journal of the IAOS, 1-13.10.3233/SJI-200679
  18. Nordholt, E. S. (2005). The Dutch virtual census 2001: A new approach by combining different sources. Statistical Journal of the United Nations Economic Commission for Europe, 22(1), 25-37.10.3233/SJU-2005-22104
  19. Nordholt, E. S., van Zeijl, J., & Hoeksma, L. (2014). Dutch Census 2011: Analysis and Methodology. The Hague / Heerlen: Statistics Netherlands.
  20. R Core Team. (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  21. Rässler, S. (2012). Statistical matching: A frequentist theory, practical applications, and alternative Bayesian approaches (vol. 168). New York: Springer Science & Business Media.
  22. Renssen, R., Kroese, A., & Willeboordse, A. (2001). Aligning estimates by repeated weighting. Heerlen: Statistics Netherlands.
  23. Roszka, W. (2013). Statystyczna integracja danych w badaniach społeczno-ekonomicznych. (Unpublished doctoral dissertation). Poznań: Poznań University of Economics and Business.
  24. Särndal, C.-E. (2007). The calibration approach in survey theory and practice. Survey Methodology, 33(2), 99-119.
  25. Särndal, C.-E., & Lundström, S. (2005). Estimation in surveys with nonresponse. Hoboken: John Wiley & Sons.10.1002/0470011351
  26. Sayers, A., Ben-Shlomo, Y., Blom, A. W., & Steele, F. (2016). Probabilistic record linkage. International Journal of Epidemiology, 45(3), 954-964.10.1093/ije/dyv322
  27. Statistics Poland. (2014). The methodology of THE 2011 National Population and Housing Census: Selected aspects.
  28. Szymkowiak, M. (2019). Podejście kalibracyjne w badaniach społeczno-ekonomicznych. Poznań: Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.
  29. Van der Laan, J. (2018). Reclin: record linkage toolkit. R package version 0.1.1. Retrieved from https://cran.r-project.org/web/packages/reclin/reclin.pdf
  30. Wu, C. & Lu, W. W. (2016). Calibration weighting methods for complex surveys. International Statistical Review, 84(1), 79-98.10.1111/insr.12097
  31. Yang, S., & Kim, J. K. (2020). Statistical data integration in survey sampling: A review. Japanese Journal of Statistics and Data Science, 3, 625-650.10.1007/s42081-020-00093-w
  32. Zhang, L.-C., & Tuoto, T. (2020). Linkage-data linear regression. Journal of the Royal Statistical Society: Series A (Statistics in Society), 1-26.
DOI: https://doi.org/10.18559/ebr.2021.1.3 | Journal eISSN: 2450-0097 | Journal ISSN: 2392-1641
Language: English
Page range: 26 - 46
Submitted on: Jan 2, 2021
Accepted on: Mar 18, 2021
Published on: Apr 27, 2021
Published by: Poznań University of Economics and Business Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Marcin Szymkowiak, Kamil Wilak, published by Poznań University of Economics and Business Press
This work is licensed under the Creative Commons Attribution 4.0 License.