Table 1
Experimental setup.
| Parameter | Values |
|---|---|
| Actions | consume [(n×2),1<n<10], [–5] |
| Conditions | (ticks mod 3)=0, (ticks mod 2)=0, energy <= 0, (ticks mod 20)=0, (ticks mod 250)=0, true (always) |
| Carrying capacity (K) | 5000–20,000 (step 1000) |
| Growth rate (r) | 0.1–0.5 (step 0.2) |
| Number of agents | 100 |
| Energy-consumption | 1, 5, 10 |
| Innovation rate | 0.05–0.1 (step 0.05) |
| Threshold for institutional change | 0.4. 0.6, 0.8, 1 |
| Institutional emergence time | 50, 100, 200, 500, 1000 |
| Number-of-links | 2 |
| Rewire-prop | 0.05 |

Figure 1
The simulation procedure.
Table 2
OLS on the amount of resource remaining at the end of the simulation.
| Estimate | Std. error | t-Value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | –4626.0191 | 38.1777 | –121.17 | 0.0000 |
| Institution | 3516.6743 | 15.8985 | 221.20 | 0.0000 |
| K | 0.5148 | 0.0013 | 403.87 | 0.0000 |
| r | 14135.1495 | 46.7691 | 302.23 | 0.0000 |
| Energy consumption | –56.1966 | 2.1591 | –26.03 | 0.0000 |
| Institutional emergence time | –1.1240 | 0.0226 | –49.71 | 0.0000 |
| Mutation rate | 9.6372 | 215.9067 | 0.04 | 0.9644 |
| Threshold institutional change | –3530.4305 | 35.5500 | –99.31 | 0.0000 |
| R2 | 0.4966 | |||
| F(7,320752) | 4.52e+04 | 0.0000 |
Table 3
OLS on the amount of agents’ energy at the end of the simulation.
| Estimate | Std. error | t-Value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | –607.8326 | 16.1403 | –37.66 | 0.0000 |
| Institution | 58.8458 | 6.7214 | 8.76 | 0.0000 |
| K | 0.0915 | 0.0005 | 169.87 | 0.0000 |
| r | 3767.1631 | 19.7725 | 190.53 | 0.0000 |
| Energy consumption | –238.5417 | 0.9128 | –261.33 | 0.0000 |
| Institutional emergence time | –2.5759 | 0.0096 | –269.47 | 0.0000 |
| Mutation rate | –49.3257 | 91.2786 | –0.54 | 0.5889 |
| Threshold institutional change | –60.1269 | 15.0294 | –4.00 | 0.0001 |
| R2 | 0.3913 | |||
| F(7,320752) | 2.945e+04 | 0.0000 |

Figure 2
Average energy of agents and resource left at the end of the simulation under various institutional arrangements in low and high resource conditions. Each bar corresponds to the outcome of one institutional arrangement. Low resource is defined as K=5000, r=0.1 and energy.consumption=10. High resource is defined as K=20,000, r=0.1 and energy.consumption=1. The dashed red lines represent the average energy and resource under the same parameter configurations in the no institution condition.
Table 4
Modal institution for each combination of K, r and energy consumption.
| K | r | Energy consumption | Selected institution |
|---|---|---|---|
| 5000 | 0.10 | 1 | [“eat 2” “energy <= 0”] |
| 10,000 | 0.10 | 1 | [“eat 2” “(ticks mod 2)=0”] |
| 20,000 | 0.10 | 1 | [“eat 18” “energy <= 0”] |
| 5000 | 0.20 | 1 | [“eat 4” “(ticks mod 3)=0 ”] |
| 10,000 | 0.20 | 1 | [“eat 2” “(ticks mod 2)=0”] |
| 20,000 | 0.20 | 1 | [“” “”] |
| 5000 | 0.50 | 1 | [“eat 12” “energy <= 0”] |
| 10,000 | 0.50 | 1 | [“” “”] |
| 20,000 | 0.50 | 1 | [“” “”] |
| 5000 | 0.10 | 5 | [“eat –5” “(ticks mod 2)=0”] |
| 10,000 | 0.10 | 5 | [“eat 12” “true”] |
| 20,000 | 0.10 | 5 | [“eat 10” “(ticks mod 2)=0”] |
| 5000 | 0.20 | 5 | [“eat 10” “true”] |
| 10,000 | 0.20 | 5 | [“eat 10” “(ticks mod 2)=0”] |
| 20,000 | 0.20 | 5 | [“eat 10” “energy <= 0”] |
| 5000 | 0.50 | 5 | [“eat 12” “(ticks mod 2)=0”] |
| 10,000 | 0.50 | 5 | [“eat 12” “true”] |
| 20,000 | 0.50 | 5 | [“” “”] |
| 5000 | 0.10 | 10 | [“eat 12” “(ticks mod 2)=0”] |
| 10,000 | 0.10 | 10 | [“eat 8” “true”] |
| 20,000 | 0.10 | 10 | [“eat 10” “(ticks mod 3)=0”] |
| 5000 | 0.20 | 10 | [“eat 10” “(ticks mod 2)=0”] |
| 10,000 | 0.20 | 10 | [“eat 4” “energy <= 0”] |
| 20,000 | 0.20 | 10 | [“eat 10” “true”] |
| 5000 | 0.50 | 10 | [“eat 4” “true”] |
| 10,000 | 0.50 | 10 | [“eat 16” “energy <= 0”] |
| 20,000 | 0.50 | 10 | [“” “”] |

Figure 3
Distribution of the Aim and Condition statements under low and high resource condition. Low resource is defined as K=5000, r=0.1 and energy.consumption=10. High resource is defined as K=20,000, r=0.1 and energy.consumption=1.
