Have a personal or library account? Click to login
From Mass Movements to Mitigation Measures: A Statistical Evaluation of Landslides in the Austrian Federal Railway Network Cover

From Mass Movements to Mitigation Measures: A Statistical Evaluation of Landslides in the Austrian Federal Railway Network

Open Access
|Oct 2025

References

  1. Andrecs P., Markart G., Lang E., Hagen K., Kohl B., Bauer W., 2002. Untersuchung der Rutschungsprozesse vom Mai 1999 im Laternsertal (Vorarlberg). In: Andrecs P., Bauer W., Hagen K., Kohl B., Lang E., Markart G., Porzelt M., Schauer Th., Beiträge zur Wildbachforschung (BFW-Berichte 127). Bundesamt und Forschungszentrum für Wald, Vienna, 55–87.
  2. Austrian Conference on Spatial Planning, 2023. Flächeninanspruchnahme und Versiegelung in Österreich (Materialienheft 12). Österreichische Raumordnungskonferenz, Vienna, 80 pp.
  3. Austrian Standards, 2021. ONR 24810 – Technical protection against rockfall – Terms and definitions, effects of actions, design, monitoring and maintenance. Austrian Standards International, Vienna, 107 pp.
  4. Bainbridge R., Lim M., Dunning S., Winter M.G., Diaz-Moreno A., Martin J., Torun H., Sparkes B., Khan M.W, Jin N., 2022. Detection and forecasting of shallow landslides: lessons from a natural laboratory, Geomatics, Natural Hazards and Risk, 13/1, 686–704. https://doi.org/10.1080/19475705.2022.2041108
  5. Bowman E.T., 2022. Small Landslides – frequent, costly, and manageable. In: Davies T., Rosser N., Shroder J.F. (eds.), Landslide Hazards, Risks, and Disasters. Elsevier, Amsterdam, 439–477. https://doi.org/10.1016/B978-0-12-818464-6.00016-0
  6. Briggs K.M., Helm P.R., Smethurst J.A., Smith A., Stirling R., Svalova A., Trinidad González Y., Loveridge F.A., Glendinning S., 2023. Evidence for the weather-driven deterioration of ageing transportation earthworks in the UK. Transportation Geotechnics, 43, 101130. https://doi.org/10.1016/j.trgeo.2023.101130
  7. Casagli N., Intrieri E., Tofani V., Gigli G., Raspini F., 2023. Landslide detection, monitoring and prediction with remote-sensing techniques. Nature Reviews Earth & Environment, 4, 51–64. https://doi.org/10.1038/s43017-022-00373-x
  8. Climate Change Centre Austria, 2024. Klimastatusbericht Österreich 2023. CCCA, Vienna, 50 pp.
  9. Climate Change Centre Austria, 2025. Klimastatusbericht Österreich 2024. CCCA, Vienna, 56 pp.
  10. Cornforth D.H., 2005. Landslides in Practice: Investigations, Analysis and Remedial/Preventive Options in Soils. Wiley, Hoboken, 624 pp.
  11. Cruden D.M., Varnes D.J., 1996. Landslide types and processes. In: Turner A.K., Schuster R.L. (eds.), Landslides, Investigation and Mitigation, Special Report 247. Transportation Research Board, Washington D.C., 36–75.
  12. Dai F.C, Lee C.F., Ngai Y.Y., 2002. Landslide risk assessment and management: an overview. Engineering Geology, 64, 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X
  13. Dikau R., Brunsden D., Schrott L., Ibsen M.L., 1996. Landslide Recognition. Wiley, Chichester, 251 pp.
  14. Dumke H., Fischer T., Stöglehner G., Getzner M., 2024. Kapitel 7 – Raumplanung und Klimawandel. In: Jandl R., Tappeiner U., Foldal C.B., Erb K.-H. (eds.), APCC Special Report: Landnutzung und Klimawandel in Österreich. Springer Spektrum, Berlin/Heidelberg, 381–405.
  15. Egger H., Krenmayer H.G., Mandl G.W., Matura A., Nowotny A., Pascher G., Pestal G., Pistotnik J., Rockenschaub M., Schnabel W., 1999. Geologische Übersichtskarte der Republik Österreich 1:1 500 000 (ohne Quartär). Geologische Bundesanstalt, Wien.
  16. European Environmental Agency, 2019. Updated CLC illustrated nomenclature guidelines. Environmental Agency Austria, Vienna, 126 pp.
  17. European Organisation for Technical Assessment, 2016. European Assessment Document EAD 340020-00-0106 Flexible Kits for Retaining Debris Flows and Shallow Landslides / Open Hill Debris Flows. EU, Brussels, 25 pp.
  18. European Organisation for Technical Assessment, 2018. European Assessment Document EAD 340059-00-0106 Falling Rock Protection Kits. EU, Brussles, 28 pp.
  19. European Union, 2013. Regulation (EU) No 1315/2013 of the European Parliament and of the council of 11 December 2013 on Union guidelines for the development of the trans-European transport network and repealing decision No 661/2010/EU. EU, Brussles, 128 pp.
  20. Fonseca R.L., Trillos G.D., 2020. Shallow landslides controlled by flexible barriers composed of high-strength steel nets. In: SCG-XII International Symposium on Landslides. International Society for Soil Mechanics and Geotechnical Engineering, London, 9 pp.
  21. Freeborough K.A., Diaz Doce D., Lethbridge R., Jessamy G., Dashwood C., Pennington C., Reeves H.J., 2016. Landslide Hazard Assessment for National Rail Network, Procedia Engineering, 143, 689–696. https://doi.org/10.1016/j.proeng.2016.06.104
  22. Freeborough K.A., Dashwood C., Diaz Doce D., Jessamy G., Brooks S., Reeves H.J., Abbott S., 2018. A national assessment of landslide hazard from Outside Party Slopes to the rail network of Great Britain. Quarterly Journal of Engineering Geology and Hydrogeology, 52, 312–319. https://doi.org/10.1144/qjegh2018-029
  23. Geoland, 2025. Home. https://www.geoland.at/index.html, accessed 22 July 2025.
  24. GeoSphere Austria, 2024. GeoSphere Maps. datenzentrum/geo -sphere-maps, accessed 04 December 2024. https://www.geo-sphere.at/de/daten/
  25. Haslinger K., Breinl K., Pavlin L., Pistotnik G., Bertola M., Olefs M., Greilinger M., Schöner W., Blöschl G., 2025. Increasing hourly heavy rainfall in Austria reflected in flood changes. Nature, 639/8055, 667–672. https://doi.org/10.1038/s41586-025-08647-2
  26. Huang G., Du S., Wang D., 2023. GNSS techniques for real-time monitoring of landslides: a review. Satellite Navigation, 4, 5. https://doi.org/10.1186/s43020-023-00095-5
  27. Huebl J., Fiebiger G., 2005. Debris-mitigation measures. In: Jakob M., Hungr O. (eds.), Debris-flow Hazards and Related Phenomena. Springer, Berlin/Heidelberg, 445–487.
  28. Jaiswal P., Van Westen C.J., Jetten V., 2010. Quantitative landslide hazard assessment along a transportation corridor in southern India. Engineering Geology, 116/3, 236–250. http://dx.doi.org/10.1016/j.enggeo.2010.09.005
  29. Keegan T., Abbott B., Cruden D., Bruce I., Pritchard M., 2003. Railway ground hazard risk scenario: river erosion: earth-slide. In: Proceedings of the 3rd Canadian Conference on Geotechnique and Natural Hazards. Canadian Geotechnical Society, Edmonton, 234–242.
  30. Kellermann P., Bubeck P., Kundela G., Dosio A., Thieken A.H., 2016. Frequency analysis of critical meteorological conditions in a changing climate – Assessing future implications for railway transportation in Austria. Climate, 4, 25. https://doi.org/10.3390/cli4020025
  31. Kessell C., 2019: The management of railway incidents. Rail Engineer, 172, 38–40.
  32. Ko Ko C., Chowdhury R., Flentje P., 2005. Hazard and risk assessment of rainfall – induced landsliding along a railway line. Quarterly Journal of Engineering Geology and Hydrogeology, 38, 197–213. https://doi.org/10.1144/1470-9236/04-004
  33. Kwan J.S.H., Chan S.L., Cheuk J.C.Y., Koo R.C.H., 2014. A case study on an open hillside landslide impacting on a flexible rockfall barrier at Jordan Valley, Hong Kong. Landslides, 11, 1037–1050. https://doi.org/10.1007/s10346-013-0461-x
  34. Laimer H.J., 2017. Anthropogenically induced landslides – A challenge for railway infrastructure in mountainous regions. Engineering Geology, 222, 92–101. https://doi.org/10.1016/j.enggeo.2017.03.015
  35. Laimer H.J., Stern J., 2024. Detecting shallow landslides – Susceptibility analysis on ÖBB lines. Geomechanics and Tunneling, 17/5, 511–517. https://doi.org/10.1002/geot.202400024
  36. Lateltin O., Beer C., Raetzo H., Caron C., 1997. Landslides in Flysch terranes of Switzerland: causal factors and climate change. Eclogae Geologicae Helvetiae, 90, 401–406. https://doi.org/10.5169/seals-168171
  37. Law Y.K., Lee C.K.F., Chan A.H.Y., Mak N.P.L., Hau B.C.H., Wu J., 2024. Unveiling the role of forests in landslide occurrence, recurrence and recovery. Journal of Applied Ecology, 61, 2033–2046. https://doi.org/10.1111/1365-2664.14741
  38. Lloyd D.M., Anderson M.G., Husseian A.N., Jamaludin A., Wilkinson P.L., 2001. Preventing landslides on roads and railways: a new risk-based approach. Civil Engineering, 144, 129–134. https://doi.org/10.1680/cien.2001.144.3.129
  39. Maraun D., Knevels R., Mishra A.N., Truhetz H., Bevacqua E., Proske H., Zappa G., Brenning A., Petschko H., Schaffer A., Leopold P., Puxley P.L., 2022. A severe landslide event in the Alpine foreland under possible future climate and land-use changes. Communications Earth & Environment, 3, 87. https://doi.org/10.1038/s43247-022-00408-7
  40. Marchesini I., Althuwaynee O., Santangelo M., Alvioli M., Cardinali M., Mergili M., Reichenbach P., Peruccacci S., Balducci V., Agostino I., Esposito R., Rossi M., 2024. National-scale assessment of railways exposure to rapid flow-like landslides. Engineering Geology, 332, 107474. https://doi.org/10.1016/j.enggeo.2024.107474
  41. Martinović K., Gavin K., Reale C., 2016. Developement of a landslide susceptibility assessment for a rail network. Engineering Geology, 215, 1–9. http://dx.doi.org/10.1016/j.enggeo.2016.10.011
  42. McColl S.T., Cook S.J., 2024. A universal size classification system for landslides. Landslides, 21, 111–120. https://doi.org/10.1007/s10346-023-02131-6
  43. Michoud C., Jaboyedoff M., Derron M.H., Nadim F., Leroi E., 2011. Classification of landslide-inducing anthropogenic activities. In: Proceedings of the 5th Canadian Conference on Geotechnique and Natural Hazards. Canadian Geotechnical Society, Kelowna, 15–17.
  44. Mitigating Landslip Risk, 2022. Rail Engineer, 195, 48–49.
  45. Moelk M., Hofmann R., 2018. Schutzbauwerke gegen Steinschlag nach ONR 24810. Berichte der Geologischen Bundesanstalt, 125, 66–89.
  46. ÖBB Infrastruktur AG, 2024. Bautechnik. https://infrastruktur.oebb.at/Webshop-Regelwerke/rwdb-webshop/#/regelwerkpackage/preview/26148cff-5984-4307-a483-11e9a1350962
  47. Papathoma-Koehle M., Glade T., 2013. The role of vegetation cover change for landslide hazard and risk. In: Renaud G., Sudmeier-Rieux K., Estrella M. (eds.), The Role of Ecosystems in Disaster Risk Reduction. UNU-Press, Tokyo, 293–320.
  48. Proske H., Bauer C., 2016. Indicative hazard maps for landslides in Styria; Austria, Acta Geobalcanica, 2/2, 92–101. https://doi.org/10.18509/AGB.2016.10
  49. Quinn A., Jack A., Hodgkinson, S., Ferranti, E., Beckford J., Dora J., 2017.
  50. Rail Adapt – Adapting the railway for the future. UIC, Paris, 108 pp. Rail Accident Investigation Branch, 2022. Rail Accident Report – Derailment of a passenger train at Carmont, Aberdeenshire 12 August 2020. Department of Transport, Derby, 296 pp.
  51. Ravet F., Goy A., Rochat E., 2021. Fiber Optic Sensing for Landslides Early Signs Monitoring and Consequences Assessment. In: NSG2021 27th European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists and Engineers, Bunnik, 1–5. https://doi.org/10.3997/2214-4609.202120026
  52. Reichenbach P., Rossi M., Malamud B.D., Mihir M., Guzzetti F., 2018. A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60–91. https://doi.org/10.1016/j.earscirev.2018.03.001
  53. Reinprecht V., Pettauer M., Rebhan M.J., Baldermann A., 2025. Hydro-chemical inspection of landslide drainage structures reveals high risk for scaling processes. Science of The Total Environment, 994, 180071. https://doi.org/10.1016/j.scitotenv.2025.180071
  54. Schloegl M., Matulla C., 2018. Potential future exposure of European land transport infrastructure to rainfall-induced landslides throughout the 21st century. Natural Hazards and Earth System Sciences, 18, 1121–1132. https://doi.org/10.5194/nhess-18-1121-2018
  55. Schmaltz E.M., Mergili M., 2018. Integration of root systems into a GIS-based slip surface model: Computational experiments in a generic hillslope environment. Landslides, 15/8, 1561–1575. https://doi.org/10.1007/s1034 6-018-0970-8
  56. Shruti N., Sajinkumar K.S., Thomas O., Anuja V.J., Samuel R.A., Muraleedharan O., 2018. Early Warning System for Shallow Landslides Using Rainfall Threshold and Slope Stability Analysis. Geoscience Frontiers, 9/6, 1871–1882. https://doi.org/10.1016/j.gsf.2017.10.008
  57. Sze E.H.Y., Koo R.C.H., Leung J.M.Y., Ho, K.K.S., 2018. Design of flexible barriers against sizeable landslides in Hong Kong. HKIE Transactions, 25/2, 115–128. https://doi.org/10.1080/1023697X.2018.1462107
  58. Taylor F.E., Tarolli P., Malamud B.D., 2020. Preface: Landslide–transport network interactions. Natural Hazards and Earth System Sciences, 20, 2585–2590. https://doi.org/10.5194/nhess-20-2585-2020
  59. Torizin J., Schüßler N., Fuchs M., 2022. Landslide Susceptibility Assessment Tools v1.0.0b – Project Manager Suite: a new modular toolkit for landslide susceptibility assessment. Geoscientific Model Development, 15, 2791–2812. https://doi.org/10.5194/gmd-15-2791-2022
  60. Varnes D.J., 1978. Slope movement types and processes. In: Schuster R.L. and Krizek R.J. (eds.), Landslides: Analysis and Control. Transportation and Road Research Board (Special Report 176), National Academy of Science, Washington D.C., 11–33.
  61. Vranken L., Van Turnhout P., Van den Eeckhaut M., Vandekerckhove L., Poesen J., 2013. Economic valuation of landslide damage in hilly regions: A case study from Flanders, Belgium. Science of The Total Environment, 447, 323–336. https://doi.org/10.1016/j.scitotenv.2013.01.025
  62. Wang F., Chen Y., Yan K., 2023. A destructive mudstone landslide hit a high-speed railway on 15 September 2022 in Xining city, Qinghai province, China. Landslides, 20, 871–874. https://doi.org/10.1007/s10346-022-02016-0
  63. Wemple B.C., Swanson F.J., Jones J.A., 2001. Forest roads and geomorphic process interactions, Cascade Range, Oregon. Earth Surface Processes and Landforms, 26/2, 191–204. http://dx.doi.org/10.1002/1096-9837(200102)
  64. Wendeler C., Glover J., 2015. Multiple Load Case on Flexible Shallow Landslide Barriers: Shallow Landslide and Rockfall. In: Lollino G., Giordan D., Crosta G.B., Corominas J., Azzam R., Wasowski J., Sciarra N. (eds.), Engineering Geology for Society and Territory – Volume 2. Springer, Cham, 473–477. https://doi.org/10.1007/978-3-319-09057-3_77
  65. Wendeler C., Deana M.L., 2016. Analysis of the behavior of a flexible shallow landslide barrier under multiple load case: Mudslide and rockfall. In: Aversa S., Cascini L, Picarelli L., Scavia C. (eds.), Landslides and Engineered Slopes. Experience, Theory and Practice. Proceedings of the 12th International Symposium on Landslides (Napoli, Italy, 12–19 June 2016). CRC Press, London, 2053–2058.
  66. Zachar D., 1982. Soil erosion (Developments in Soil Science, 10). Elsevier Science, Amsterdam, 547 pp.
DOI: https://doi.org/10.17738/ajes.2025.0016 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 281 - 299
Submitted on: May 18, 2025
Accepted on: Sep 11, 2025
Published on: Oct 8, 2025
Published by: Austrian Geological Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Hans Jörg Laimer, published by Austrian Geological Society
This work is licensed under the Creative Commons Attribution 4.0 License.