Have a personal or library account? Click to login
Understanding the Geomorphology of Deep-Seated Landslides: Insights from the Váh River Valley, Western Carpathians, Slovakia Cover

Understanding the Geomorphology of Deep-Seated Landslides: Insights from the Váh River Valley, Western Carpathians, Slovakia

Open Access
|Oct 2025

References

  1. Agliardi F., Crosta G., Zanchi A., 2001. Structural constraints on deep-seated slope deformation kinematics. Engineering Geology, 59/1-2, 83–102. https://doi.org/10.1016/S0013-7952(00)00066-1
  2. Agliardi F., Crosta G.B., Zanchi A., Ravazzi C., 2009. Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy. Geomorphology, 103/1, 113–129. https://doi.org/10.1016/j.geomorph.2007.09.015
  3. Agliardi F., Crippa C., 2022. Deep-Seated Gravitational Slope Deformations. In: Shroder J.F. (ed.) Treatise on Geomorphology, second ed., vol. 5. Academic Press, London, 183–199. https://doi.org/10.1016/B978-0-12-818234-5.00182-6
  4. Ambrosi C., Crosta G.B., 2006. Large sackung along major tectonic features in the Central Italian Alps. Engineering Geology, 83, 183–200. https://doi.org/10.1016/j.enggeo.2005.06.031
  5. Baroň I., Krejčí O., 2004. Structure and dynamics of deep-seated slope failures in the Magura Flysch Nappe, outer Western Carpathians (Czech Republic). Natural Hazards and Earth System Sciences, 4/6, 549–562. https://doi.org/10.5194/nhess-4-549-2004
  6. Bednarik M., Yilmaz I., Kralovičová L., 2024. Deterministic approach to assess landslide susceptibility and landslide activity in the Central-Western Region of Slovakia. Bulletin of Engineering Geology and the Environment, 83, 327. https://doi.org/10.1007/s10064-024-03795-7
  7. Broska I., Janák M., Svojtka M., Yi K., Konečný K., Kubiš M., Kurylo S., Hrdlička M., Maraszewska M., 2022. Variscan granitic magmatism in the Western Carpathians with linkage to slab break-off. Lithos, 412–413, 106589. https://doi.org/10.1016/j.lithos.2021.106589
  8. Chalupa V., Pánek T., Šilhán K., Břežný M., Tichavský R., Grygar R., 2021. Low-topography deep-seated gravitational slope deformation: Slope instability of flysch thrust fronts (Outer Western Carpathians). Geomorphology, 389, 107833. https://doi.org/10.1016/j.geomorph.2021.107833
  9. Chiba T., Kaneta S., Suzuki Y., 2008. Red Relief Image Map: New Visualization Method for Three Dimensional Data. Remote Sensing and Spatial Information Science, 37, 1071–1076.
  10. Chigira M., 1992. Long-term gravitational deformation of rocks by mass rock creep. Engineering Geology, 32, 157–184. https://doi.org/10.1016/0013-7952(92)90043-X
  11. Chigira M., Tsou C.Y., Higaki D., Amatya S.C., 2022. A series of rockslides and gravitational slope deformations aligned along the Kali Gandaki across the Nepal Himalaya. Geomorphology, 400, 108098. https://doi.org/10.1016/j.geomorph.2021.108098
  12. Claessens L., Schoorl J.M., Veldkamp A., 2007. Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: An application for Northern New Zealand. Geomorphology, 87/1–2, 16–27. https://doi.org/10.1016/j.geomorph.2006.06.039
  13. Crosta G.B., Frattini P., Agliardi F., 2013. Deep seated gravitational slope deformations in the European Alps. Tectonophysics, 605, 13–33. https://doi.org/10.1016/j.tecto.2013.04.028
  14. Cruden D.M., Varnes D.J., 1996. Landslide types and processes. In: Turner A.K., Schuster R.L. (eds) Landslide investigation and mitigation. Washington D.C., National Academy of Sciences, Transportation Research Board Special Report, 247, 36–75.
  15. Discenza M.E., Esposito C., 2021. State-of-art and remarks on some open questions about dsgsds: hints from a review of the scientific literature on related topics. Italian Journal of Engineering Geology and Environment, 1, 31–59. https://doi.org/10.4408/IJEGE.2021-01.O-03
  16. Discenza M.E., Esposito C., Di Luzio E., Delchiaro M., Di Martire D., Minnillo M., 2023. Deep-seated gravitational slope deformations in Molise region (Italy): Novel inventory and main geomorphological features. Journal of Maps, 19, 2163198. https://doi.org/10.1080/17445647.2022.2163198
  17. ESRI, 2023. ArcGIS Pro, version 3.4, software
  18. Hradecký J., Pánek T., Klimová R., 2007. Landslide complex in the northern part of the Silesian Beskydy Mountains (Czech Republic). Landslides, 4, 53–62. https://doi.org/10.1007/s10346-006-0052-1
  19. Hungr O., Leroueil S., Picarelli L., 2014. The Varnes classification of landslide types: An update. Landslides, 11, 167–194. https://doi.org/10.1007/s10346-013-0436-y
  20. Jaboyedoff M., Penna I., Pedrazzini A., Baroň I., Crosta G.B., 2013. An introductory review on gravitational-deformation induced structures, fabrics and modeling. Tectonophysics, 605, 1–12. https://doi.org/10.1016/j.tecto.2013.06.027
  21. Kellogg K.S., 2001. Tectonic controls on a large landslide complex: Williams Fork Mountains near Dillon, Colorado. Geomorphology, 41/4, 355–368. https://doi.org/10.1016/S0169-555X(01)00067-8
  22. Kohut M., Carl C., Michalko J., 1996. Granitoid Rocks of the Veľká Fatra Mts. Rb/Sr Isotope Geochronology (Western Carpathians, Slovakia). Geologica Carpathica, 47/2, 81–89.
  23. Korup O., 2012. Landslides in the Earth system. In: Clague J.J. (ed.)
  24. Landslides. Types, Mechanisms and Modeling. Cambridge University Press, Cambridge, 10–23. https://doi.org/10.1017/CBO9780511740367.003
  25. Krejčí O., Baroň I., Bíl M., Jurová Z., Bárta J., Hubatka F., Kašpárek M., Kirchner K., Stach J., 2002. Some examples of deep-seated landslides in the Flysch Belt of the Western Carpathians. In: Rybar J. (ed.) Landslides (1st ed.). London, Routledge. https://doi.org/10.1201/9780203749197-51
  26. LaHusen S.R., Grant A.R., 2024. Complex landslide patterns explained by local intra-unit variability of stratigraphy and structure: Case study in the Tyee Formation, Oregon, USA. Engineering Geology, 329, 107387. https://doi.org/10.1016/j.enggeo.2023.107387
  27. Lebourg T., Zerathe S., Fabre R., Giuliano J., Vidal M., 2014. A Late Holocene deep-seated landslide in the northern French Pyre-nees. Geomorphology, 208, 1–10. https://doi.org/10.1016/j.geomorph.2013.11.008
  28. Lehotský M., Boltižiar M. (eds.), 2022. Landscapes and Landforms of Slovakia (1st ed.). Springer International Publishing, Switzerland. 467 pp. https://doi.org/10.1007/978-3-030-89293-7
  29. Lepeška T., 2016. Dynamics of development and variability of surface degradation in the subalpine and alpine zones (an example from the Veľká Fatra Mts., Slovakia). Open Geoscience, 8, 771–786. https://doi.org/10.1515/geo-2016-0056
  30. Malgot J., Mahr T., 1979. Engineering geological mapping of the West Carpathian landslide areas. Bulletin of The International Association of Engineering Geology, 19, 116–121. https://doi.org/10.1007/bf02600461
  31. Malik P., Coplak M., Kuvik M., Švasta J., 2019. Recharge Impulse Spreading in Western Carpathian’s Mountainous Fissure – Karst Aquifer. Water, 11/4, 763. https://doi.org/10.3390/w11040763
  32. Nemčok A., 1982. Zosuvy v slovenských Karpatoch. Veda, Bratislava, 319 pp.
  33. Pánek T., Klimeš J., 2016. Temporal behavior of deep-seated gravitational slope deformations: A review. Earth-Science Reviews, 156, 14–38. https://doi.org/10.1016/j.earscirev.2016.02.007
  34. Pánek T., Břežný M., Kapustová V., Chalupa V., 2019. Large landslides and deep-seated gravitational slope deformations in the Czech Flysch Carpathians: New LiDAR-based inventory. Geomorphology, 346, 106852. https://doi.org/10.1016/j.geomorph.2019.106852
  35. Parise M., 2003. Observation of surface features on an active landslide, and implications for understanding its history of movement. Natural Hazards and Earth System Sciences, 3, 569–580. https://doi.org/10.5194/nhess-3-569-2003
  36. Pauditš P., Šimeková J., Liščák P., Mižák J., 2014. Landslide Inventory in Detailed Scale: Current State and Future Approaches. Slovak Geological Magazine, 14/1, 31–40.
  37. Pfeiffer J., Zieher T., Schneider-Muntau B., 2023. Slope stability evolution of a deep-seated landslide considering a constantly deforming topography. Earth Surface Processes and Landforms, 48/5, 923–939. https://doi.org/10.1002/esp.5527
  38. Poller U., Kohut M., Todt W., 2003. Triassic zircon ages in the Veľká Fatra Mts. - Constraints for long-living extensional magmatism or reopening of isotopic systems? Journal of the Czech Geological Society, 48, 110.
  39. Preisig G., Eberhardt E., Smithyman M., Preh A., Bonzanigo L., 2016. Hydromechanical rock mass fatigue in deep-seated landslides accompanying seasonal variations in pore pressures. Rock Mechanics and Rock Engineering, 49, 2333–2351. https://doi.org/10.1007/s00603-016-0912-5
  40. Radbruch-Hall D.H., 1978. Gravitational creep of rock masses on slopes. Developments in Geotechnical Engineering, 14A, 607–657. https://doi.org/10.1016/B978-0-444-41507-3.50025-8
  41. Spiekermann R.I., Zadelhoff F., Schindler J., Smith H., Phillips C., Schwarz M., 2023. Comparing physical and statistical landslide susceptibility models at the scale of individual trees. Geomorphology, 440, 108870. https://doi.org/10.1016/j.geomorph.2023.108870
  42. ŠGÚDŠ, 2025a. Geological map of the Slovak Republic at scale 1:50000. State Geological Institute of the Slovak Republic (Štátny geologický ústav Dionýza Štúra Slovenskej republiky). https://www.geology.sk/maps-and-data/mapovy-portal/geological-maps/geological-map-of-the-slovak-republic-at-scale-150-000/?lang=en
  43. ŠGÚDŠ, 2025b. Geofond registires of boreholes data. State Geological Institute of the Slovak Republic (Štátny geologický ústav Dionýza Štúra Slovenskej republiky). https://app.geology.sk/geofond/vrty/
  44. Šimeková J., Martinčeková T., Abrahám P., Gejdoš T., Grenčíková A., Grman D., Hrašna M., Jadroň D., Záthurecký A., Kotrčová E., Liščák P., Malgot J., Masný M., Mokrá M., Petro Ľ., Polaščinová E., Solčiansky R., Kopecký M., Žabková E., Wanieková D., Baliak F., Caudt Ľ., Rusnák M., Sluka V., 2006. Atlas of Slope Stability Maps SR. Štátny geologický ústav Dionýza Štúra, Bratislava.
  45. Šimeková J., Liščák P., Jánová V., Martinčeková T., 2014. Atlas of Slope Stability Maps SR at Scale 1:50 000 – its results and use in practice. Slovak Geological Magazine, 1, 19–30.
  46. Tibaldi A., Corazzato C., Rust D., Bonali F.L., Pasquarè Mariotto F.A., Korzhenkov A.M., Oppizzi P., Bonzanigo L., 2015. Tectonic and gravity-induced deformation along the active Talas – Fergana Fault, Tien Shan, Kyrgyzstan. Tectonophysics, 657, 38–62. https://doi.org/10.1016/j.tecto.2015.06.020
  47. Thirard G., Thiery Y., Gourdier S., Grandjean G., Maquaire O., François B., Bitri A., Coulibaly S., Lissak C., Costa S., 2022. Hydromechanical assessment of a complex landslide through geophysics and numerical modeling: Toward an upgrade for the Villerville landslide (Normandy, France). Engineering Geology, 297, 106516. https://doi.org/10.1016/j.enggeo.2022.106516
  48. Toločka A., Mortazavi A., Kapustová V., 2024. Investigation of a deep-seated gravitational slope deformation in Western Carpathian Mts., Slovakia. 58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, Colorado, USA. https://doi.org/10.56952/ARMA-2024-0585
  49. ÚGKK SR, 2025. Airborne Laser Scanning – DTM. Geodesy, Cartography and Cadastre Authority of the Slovak Republic. https://www.geo-portal.sk/en/zbgis/als/
  50. Vlčko J., Wagner P., Ondrasik R., Jansky L., 2009. Landslide Hazard Strategies in Slovakia. In Sassa K., Canuti P. (eds.), Landslides – disaster risk reduction. Berlin, Springer-Verlag. 650 pp. https://doi.org/10.1007/978-3-540-69970-5
  51. Yokoyama R., Shirasawa M., Pike R.J., 2002. Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models. Photogrammetric Engineering and Remote Sensing, 68/3, 257–265.
  52. Zangerl C., Eberhardt E., Perzlmaier S., 2010. Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Engineering Geology, 112/1, 53.67. https://doi.org/10.1016/j.enggeo.2010.01.001
DOI: https://doi.org/10.17738/ajes.2025.0015 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 265 - 280
Submitted on: Nov 30, 2024
Accepted on: Sep 3, 2025
Published on: Oct 8, 2025
Published by: Austrian Geological Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Andrius Toločka, published by Austrian Geological Society
This work is licensed under the Creative Commons Attribution 4.0 License.