Have a personal or library account? Click to login
Sedimentological and pore-scale characterisation of the Bockfließ Formation, Central Vienna Basin: implications for sealing potential Cover

Sedimentological and pore-scale characterisation of the Bockfließ Formation, Central Vienna Basin: implications for sealing potential

Open Access
|Aug 2025

References

  1. Allen J.R.L., 1983. Studies in fluviatile sedimentation: Bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the brownstones (L. devonian), welsh borders. Sedimentary Geology 33/4, 237–293. https://doi.org/10.1016/0037-0738(83)90076-3">https://doi.org/10.1016/0037-0738(83)90076-3.
  2. Bhuvanagiri S.R.V.P., Pichika S., Akkur R., Chaganti K., Madhusoodhanan R., Pusapati S.V., 2018. Integrated Approach for Modeling Coastal Lagoons: A Case for Chilka Lake, India, in: Srinivasa Rao, A.S.R., Rao, C.R. (Eds.), Integrated Population Biology and Modeling, Part A, vol. 39. Elsevier, 343–402. https://doi.org/10.1016/bs.host.2018.06.005">https://doi.org/10.1016/bs.host.2018.06.005.
  3. Bourg I.C., 2015. Sealing Shales versus Brittle Shales: A Sharp Threshold in the Material Properties and Energy Technology Uses of Fine- Grained Sedimentary Rocks. Environ. Sci. Technol. Lett. 2/10, 255–259. https://doi.org/10.1021/acs.estlett.5b00233">https://doi.org/10.1021/acs.estlett.5b00233.
  4. Bridge J.S., 2006. Fluvial Facies Models: Recent Developments, in: Posamentier, H.W. (Ed.), Facies models revisited. Society for Sedimentary Geology, Tulsa, Okla., 85–170. https://doi.org/10.2110/pec.06.84.0085">https://doi.org/10.2110/pec.06.84.0085.
  5. Busch A., Bertier P., Gensterblum Y., Rother G., Spiers C.J., Zhang M., Wentinck H.M., 2016. On sorption and swelling of CO2 in clays. Geomech. Geophys. Geo-energ. Geo-resour. 2/2, 111–130. https://doi.org/10.1007/s40948-016-0024-4">https://doi.org/10.1007/s40948-016-0024-4.
  6. Clifton H.E., 2005. Coastal Sedimentary Facies, in: Schwartz, M.L. (Ed.), Encyclopedia of Coastal Science. Springer Netherlands, Dordrecht, 270–278. https://doi.org/10.1007/1-4020-3880-1_84">https://doi.org/10.1007/1-4020-3880-1_84.
  7. Daniel R.F., Kaldi J.G., 2009. Evaluating Seal Capacity of Cap Rocks and Intraformational Barriers for CO2 Containment, in: Grobe, M., Pashin, J.C., Dodge, R.L. (Eds.), Carbon Dioxide Sequestration in Geological Media-State of the Science, vol. 59. American Association of Petroleum Geologists, 335–345. https://doi.org/10.1306/St591317">https://doi.org/10.1306/St591317.
  8. Decker K., 1996. Miocene tectonics at the Alpine-Carpathian junction and the evolution of the Vienna Basin. Mitt Ges Geol Bergbaustud Osterr 41, 33–44. https://opac.geologie.ac.at/ais312/dokumente/Mitteilungen_Band41_A.pdf.
  9. Dickson J.A.D., 1965. A Modified Staining Technique for Carbonates in Thin Section. Nature 205/4971, 587. https://doi.org/10.1038/205587a0">https://doi.org/10.1038/205587a0.
  10. Germay C., Lhomme T., Perneder L., 2023. High-resolution core data and machine learning schemes applied to rock facies classification. SP 527/1, 121–135. https://doi.org/10.1144/SP527-2021-193">https://doi.org/10.1144/SP527-2021-193.
  11. Gilbert G.K., 1885. The topographic features of lake shores. US Government Printing Office. https://doi.org/10.1038/034269a0">https://doi.org/10.1038/034269a0.
  12. Hamilton W., Wagner L., Wessely G., 2000. Oil and Gas in Austria. Mitt. Osterr. Geol. Ges. 92, 235–262. https://www.geologie.or.at/images/OEGG/geol-ges/mitteilungen/mitt-92.html.
  13. Haq B.U., Hardenbol J.A.N., Vail P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in: Wilgus C.K., Hastings B.S., Posamentier H., van Wagoner J., Ross C.A., St. Kendall C.G.C. (Eds.), Sea-Level Changes. SEPM (Society for Sedimentary Geology), 71–108. https://doi.org/10.2110/pec.88.01">https://doi.org/10.2110/pec.88.01.
  14. Harzhauser M., Kranner M., Mandic O., Strauss P., Siedl W., Piller W.E., 2020. Miocene lithostratigraphy of the northern and central Vienna Basin (Austria). Austrian Journal of Earth Sciences 113/2, 169–199. https://doi.org/10.17738/ajes.2020.0011">https://doi.org/10.17738/ajes.2020.0011.
  15. Harzhauser M., 2022. Vienna Basin, Korneuburg Basin. In: Piller W.E. (Ed.), Friebe J.G., Gross, M., Harzhauser M., Van Husen D., Koukal V., Krenmayr H.G., Krois P., Nebelsick J.H., Ortner H., Piller W.E., Reitner J.M., Roetzel R., Rogl F., Rupp C., Stingl V., Wagner L., Wagreich M., 2022. Stratigraphic Chart of Austria – Cenozoic. Abhandlungen der Geologische Bundesanstalt, 76, 163–181. https://www.inatura.at/forschung-online/piller_etal_2022_lithounits_cenozoic_austria_abh-gba_76.pdf.
  16. Harzhauser M., Kranner M., Siedl W., Conradi F., Piller W.E., 2024a. The Neogene of the Vienna Basin – a synthesis. In: Tari G. C., Kitchka A., Krezsek C., Lučić D., Markič M., Radivojević D., Sachsenhofer R.F., Šujan M. (eds) The Miocene Extensional Pannonian Superbasin, Volume 1: Regional Geology. Geological Society, London, Special Publications, 554. https://doi.org/10.1144/SP554-2023-168">https://doi.org/10.1144/SP554-2023-168.
  17. Harzhauser M., Landau B., Mandic O., Neubauer T.A., 2024b. The Central Paratethys Sea-rise and demise of a Miocene European marine biodiversity hotspot. Scientific Reports, 14, 16288, 2024. https://doi.org/10.1038/s41598-024-67370-6">https://doi.org/10.1038/s41598-024-67370-6.
  18. Hayes M., FitzGerald D., 2013. Origin, Evolution, and Classification of Tidal Inlets. Journal of Coastal Research, 69, 14–33. https://doi.org/10.2112/SI_69_3">https://doi.org/10.2112/SI_69_3.
  19. Hewins M.R., Perry C.T., 2006. Bathymetric and Environmentally Influenced Patterns of Carbonate Sediment Accumulation in Three Contrasting Reef Settings, Danjugan Island, Philippines. Journal of Coastal Research 224, 812–824. https://doi.org/10.2112/04-0158.1">https://doi.org/10.2112/04-0158.1.
  20. Holzel M., Decker K., Zamolyi A., Strauss P., Wagreich M., 2010. Lower Miocene structural evolution of the central Vienna Basin (Austria). Marine and Petroleum Geology 27/3, 666–681. https://doi.org/10.1016/j.marpetgeo.2009.10.005">https://doi.org/10.1016/j.marpetgeo.2009.10.005.
  21. Kaldi J.G., Atkinson C.D., 1997. Evaluating Seal Potential Example from the Talang Akar Formation, offshore Northwest Java, Indonesia. In: Surdam, R.C. (Ed.), Seals, Traps, and the Petroleum System. American Association of Petroleum Geologists. https://doi.org/10.1306/M67611">https://doi.org/10.1306/M67611.
  22. Kaniewski D., Marriner N., Vacchi M., Camuffo D., Bivolaru A., Sarti G., Bertoni D., Diatta L., Markakis N., Martella A., Otto T., Luce F., Calaon D., Cottica D., Morhange C., 2024. Holocene Sea-level impacts on Venice Lagoon’s coastal wetlands. Global and Planetary Change 236, 104426. https://doi.org/10.1016/j.gloplacha.2024.104426">https://doi.org/10.1016/j.gloplacha.2024.104426.
  23. Kjerfve B., 1994. Chapter 1 Coastal Lagoons, in: Coastal Lagoon Processes, vol. 60. Elsevier, pp. 1–8. https://doi.org/10.1016/S0422-9894(08)70006-0">https://doi.org/10.1016/S0422-9894(08)70006-0.
  24. Kovač M., Barath I., Harzhauser M., Hlavaty I., Hudackova N., 2004. Miocene depositional systems and sequence stratigraphy of the Vienna Basin. CFS Courier Forschungsinstitut Senckenberg 246, 187–212.
  25. Lopes C.T., Savian J.F., Frigo E., Endrizzi G., Hartmann G.A., Santos N.O., Trindade R.I.F., Ivanoff M.D., Toldo E.E., Fauth G., Oliveira L.V., Bom M.H.H., 2022. Late Holocene paleosecular variation and relative paleointensity records from Lagoa dos Patos (southern Brazil). Physics of the Earth and Planetary Interiors 332, 106935. https://doi.org/10.1016/j.pepi.2022.106935">https://doi.org/10.1016/j.pepi.2022.106935.
  26. MacEachern J.A., Bann K.L., Gingras M.K., Zonneveld J.-P., Dashtgard S.E., Pemberton S.G., 2012. The Ichnofacies Paradigm, in: Knaust, D., Bromley, R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments, vol. 64. Elsevier, 103–138. https://doi.org/10.1016/B978-0-444-53813-0.00004-6">https://doi.org/10.1016/B978-0-444-53813-0.00004-6.
  27. Magri M., Bondavalli C., Bartoli M., Benelli S., Žilius M., Petkuviene J., Vybernaite- Lubiene I., Vaičiūtė D., Grinienė E., Zemlys P., Morkūnė R., Daunys D., Solovjova S., Bučas M., Gasiūnaitė Z.R., Baziukas-Razinkovas A., Bodini A., 2024. Temporal and spatial differences in nitrogen and phosphorus biogeochemistry and ecosystem functioning of a hypertrophic lagoon (Curonian Lagoon, SE Baltic Sea) revealed via Ecological Network Analysis. The Science of the total environment 921, 171070. https://doi.org/10.1016/j.scitotenv.2024.171070">https://doi.org/10.1016/j.scitotenv.2024.171070.
  28. McGee W.J., 1890. The southern extension of the Appomattox Formation. American Journal of Science 3/235, 15–41. https://doi.org/10.2475/ajs.s3-40.235.15">https://doi.org/10.2475/ajs.s3-40.235.15.
  29. McRae S.G., 1972. Glauconite. Earth-Science Reviews 8/4, 397–440. https://doi.org/10.1016/0012-8252(72)90063-3">https://doi.org/10.1016/0012-8252(72)90063-3.
  30. Miall A.D., 2006. The Geology of Fluvial Deposits. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03237-4">https://doi.org/10.1007/978-3-662-03237-4.
  31. Morsilli M., Pomar L., 2012. Internal waves vs. surface storm waves: a review on the origin of hummocky cross‐stratification. Terra Nova 24/4, 273–282. https://doi.org/10.1111/j.1365-3121.2012.01070.x">https://doi.org/10.1111/j.1365-3121.2012.01070.x.
  32. Neubauer T.A., Harzhauser M., Kroh A., Georgopoulou E., Mandic O., 2015. A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth-Science Reviews 143, 98–116. https://doi.org/10.1016/j.earscirev.2015.01.010">https://doi.org/10.1016/j.earscirev.2015.01.010.
  33. Papp A., Krobot W., Hladecek K., 1973. Zur Gliederung des Neogens im Zentralen Wiener Becken. Mitt. Ges. Geol. Berbaustud, Band 22, 191–199. https://opac.geologie.ac.at/ais312/dokumente/Mitteilungen_Band22_A.pdf.
  34. Pemberton S.G., MacEachern J.A., Dashtgard S.E., Bann K.L., Gingras M.K., Zonneveld J.-P., 2012. Shorefaces, in: Knaust D., Bromley R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments, vol. 64. Elsevier, 563–603. https://doi.org/10.1016/B978-0-444-53813-0.00019-8">https://doi.org/10.1016/B978-0-444-53813-0.00019-8.
  35. Pereira Coutinho M.T., Brito A.C., Pereira P., Goncalves A.S., Moita M.T., 2012. A phytoplankton tool for water quality assessment in semi-enclosed coastal lagoons: Open vs closed regimes. Estuarine, Coastal and Shelf Science 110, 134–146. https://doi.org/10.1016/j.ecss.2012.04.007">https://doi.org/10.1016/j.ecss.2012.04.007.
  36. Piller W.E., Harzhauser M., Mandic O., 2007. Miocene Central Paratethys stratigraphy – current status and future directions. strat 4/2–3, 151–168. https://doi.org/10.29041/strat.04.2.09">https://doi.org/10.29041/strat.04.2.09.
  37. Popov S.V., Rogl F., Rozanov A.Y., Steininger F.F., Shcherba I.G., and Kovač M., 2004. Lithological-Paleogeographic maps of the Paratethys. 10 maps Late Eocene to Pliocene. Courier Forsch.-Inst. Senckenberg 250, 1–46.
  38. Pratt B.R., 1998. Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sedimentary Geology 117/1–2, 1–10. https://doi.org/10.1016/S0037-0738(98)00023-2">https://doi.org/10.1016/S0037-0738(98)00023-2.
  39. Reineck H.-E., Singh I.B., 1973. Depositional Sedimentary Environments. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81498-3">https://doi.org/10.1007/978-3-642-81498-3.
  40. Richard T., Dagrain F., Poyol E., Detournay E., 2012. Rock strength determination from scratch tests. Engineering Geology 147–148, 91–100. https://doi.org/10.1016/j.enggeo.2012.07.011">https://doi.org/10.1016/j.enggeo.2012.07.011.
  41. Rubio B., Lopez-Perez A.E., 2024. Exploring the Genesis of Glaucony and Verdine Facies for Paleoenvironmental Interpretation: A review. Sedimentary Geology. 461. 106579. https://doi.org/10.1016/j.sedgeo.2024.106579">https://doi.org/10.1016/j.sedgeo.2024.106579.
  42. Ruman A., Ćorić S., Halasova E., Harzhauser M., Hudačkova N., Jamrich M., Palzer-Khomenko M., Kranner M., Mandic O., Radionova E.P., Rybar S., Šimo V., Šujan M., Kovač M., 2021. The “Rzehakia beds” on the northern shelf of the Pannonian Basin: biostratigraphic and palaeoenvironmental implications. Facies 67/1. https://link.springer.com/article/10.1007/s10347-020-00609-6.
  43. Sachsenhofer R.F., Misch D., Rainer T., Rupprecht B.J., Siedl W., 2024. The Vienna Basin: petroleum systems, storage and geothermal potential. Geological Society, London, Special Publications, 555, SP555-2023-205. https://doi.org/10.1144/SP555-2023-205">https://doi.org/10.1144/SP555-2023-205.
  44. Schultz L.G., 1964. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. Professional Paper 391C. https://pubs.usgs.gov/publication/pp391C.
  45. Schultz O., 2005. Catalogus fossilium Austriae. Verl. der Osterr. Akad. der Wiss, Wien, 6911212 pp. https://doi.org/10.1553/0x000d1cf8">https://doi.org/10.1553/0x000d1cf8.
  46. Siedl W., Strauss P., Sachsenhofer R.F., Harzhauser M., Kuffner T., Kranner M., 2020. Revised Badenian (middle Miocene) depositional systems of the Austrian Vienna Basin based on a new sequence stratigraphic framework. Austrian Journal of Earth Sciences 113/1, 87–110. https://doi.org/10.17738/ajes.2020.0006">https://doi.org/10.17738/ajes.2020.0006.
  47. Skerbisch L., Misch D., Drews M., 2023. Regional mudstone compaction trends in the Vienna Basin: top seal assessment and implications for uplift history. Int J Earth Sci (Geol Rundsch) 112, 1901–1921. https://doi.org/10.1007/s00531-023-02331-4">https://doi.org/10.1007/s00531-023-02331-4.
  48. Strauss P., Harzhauser M., Hinsch R., Wagreich M., 2006. Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geologica Carpathica 57. http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-33746562405&partner@&rel=R5.0.4.
  49. Surdam R.C., 1997. Seals, Traps, and the Petroleum System. American Association of Petroleum Geologists. https://doi.org/10.1306/M67611">https://doi.org/10.1306/M67611.
  50. Talman S.G., Keough M.J., 2001. Impact of an exotic clam, Corbula gibba, on the commercial scallop Pecten fumatus in Port Phillip Bay, south-east Australia: evidence of resource-restricted growth in a subtidal environment. Marine Ecology Progress Series 221, 135–143. https://doi.org/10.3354/meps221135">https://doi.org/10.3354/meps221135.
  51. Thomeer J., Murphy D., 2000. Capillarity in rocks. Shell/OGCI PetroSkills. Tucker M.E., Jones S., 2023. Sedimentary petrology. Wiley, Hoboken, NJ, 426 pp. ISBN: 9781118786499
  52. Vidal L., Rodriguez-Gallego L., Conde D., Martinez-Lopez W., Bonilla S., 2007. Biomass of autotrophic picoplankton in subtropical coastal lagoons: Is it relevant? Limnetica 26/2, 441–452. https://doi.org/10.23818/limn.26.37">https://doi.org/10.23818/limn.26.37.
  53. Worden R.H., 2023. Value of core for reservoir and top-seal analysis for carbon capture and storage projects. Geological Society, London, Special Publications, Volume 527, 365–385. https://doi.org/10.1144/SP527-2022-38">https://doi.org/10.1144/SP527-2022-38.
DOI: https://doi.org/10.17738/ajes.2025.0013 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 219 - 240
Submitted on: Apr 30, 2025
Accepted on: Aug 3, 2025
Published on: Aug 21, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Kanchan Dasgupta, Yaroslav Zechner, Thomas Gumpenberger, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.