Bhuvanagiri S.R.V.P., Pichika S., Akkur R., Chaganti K., Madhusoodhanan R., Pusapati S.V., 2018. Integrated Approach for Modeling Coastal Lagoons: A Case for Chilka Lake, India, in: Srinivasa Rao, A.S.R., Rao, C.R. (Eds.), Integrated Population Biology and Modeling, Part A, vol. 39. Elsevier, 343–402. https://doi.org/10.1016/bs.host.2018.06.005">https://doi.org/10.1016/bs.host.2018.06.005.
Bourg I.C., 2015. Sealing Shales versus Brittle Shales: A Sharp Threshold in the Material Properties and Energy Technology Uses of Fine- Grained Sedimentary Rocks. Environ. Sci. Technol. Lett. 2/10, 255–259. https://doi.org/10.1021/acs.estlett.5b00233">https://doi.org/10.1021/acs.estlett.5b00233.
Busch A., Bertier P., Gensterblum Y., Rother G., Spiers C.J., Zhang M., Wentinck H.M., 2016. On sorption and swelling of CO2 in clays. Geomech. Geophys. Geo-energ. Geo-resour. 2/2, 111–130. https://doi.org/10.1007/s40948-016-0024-4">https://doi.org/10.1007/s40948-016-0024-4.
Daniel R.F., Kaldi J.G., 2009. Evaluating Seal Capacity of Cap Rocks and Intraformational Barriers for CO2 Containment, in: Grobe, M., Pashin, J.C., Dodge, R.L. (Eds.), Carbon Dioxide Sequestration in Geological Media-State of the Science, vol. 59. American Association of Petroleum Geologists, 335–345. https://doi.org/10.1306/St591317">https://doi.org/10.1306/St591317.
Gilbert G.K., 1885. The topographic features of lake shores. US Government Printing Office. https://doi.org/10.1038/034269a0">https://doi.org/10.1038/034269a0.
Harzhauser M., Kranner M., Mandic O., Strauss P., Siedl W., Piller W.E., 2020. Miocene lithostratigraphy of the northern and central Vienna Basin (Austria). Austrian Journal of Earth Sciences 113/2, 169–199. https://doi.org/10.17738/ajes.2020.0011">https://doi.org/10.17738/ajes.2020.0011.
Harzhauser M., Kranner M., Siedl W., Conradi F., Piller W.E., 2024a. The Neogene of the Vienna Basin – a synthesis. In: Tari G. C., Kitchka A., Krezsek C., Lučić D., Markič M., Radivojević D., Sachsenhofer R.F., Šujan M. (eds) The Miocene Extensional Pannonian Superbasin, Volume 1: Regional Geology. Geological Society, London, Special Publications, 554. https://doi.org/10.1144/SP554-2023-168">https://doi.org/10.1144/SP554-2023-168.
Harzhauser M., Landau B., Mandic O., Neubauer T.A., 2024b. The Central Paratethys Sea-rise and demise of a Miocene European marine biodiversity hotspot. Scientific Reports, 14, 16288, 2024. https://doi.org/10.1038/s41598-024-67370-6">https://doi.org/10.1038/s41598-024-67370-6.
Hayes M., FitzGerald D., 2013. Origin, Evolution, and Classification of Tidal Inlets. Journal of Coastal Research, 69, 14–33. https://doi.org/10.2112/SI_69_3">https://doi.org/10.2112/SI_69_3.
Hewins M.R., Perry C.T., 2006. Bathymetric and Environmentally Influenced Patterns of Carbonate Sediment Accumulation in Three Contrasting Reef Settings, Danjugan Island, Philippines. Journal of Coastal Research 224, 812–824. https://doi.org/10.2112/04-0158.1">https://doi.org/10.2112/04-0158.1.
Holzel M., Decker K., Zamolyi A., Strauss P., Wagreich M., 2010. Lower Miocene structural evolution of the central Vienna Basin (Austria). Marine and Petroleum Geology 27/3, 666–681. https://doi.org/10.1016/j.marpetgeo.2009.10.005">https://doi.org/10.1016/j.marpetgeo.2009.10.005.
Kaldi J.G., Atkinson C.D., 1997. Evaluating Seal Potential Example from the Talang Akar Formation, offshore Northwest Java, Indonesia. In: Surdam, R.C. (Ed.), Seals, Traps, and the Petroleum System. American Association of Petroleum Geologists. https://doi.org/10.1306/M67611">https://doi.org/10.1306/M67611.
Kaniewski D., Marriner N., Vacchi M., Camuffo D., Bivolaru A., Sarti G., Bertoni D., Diatta L., Markakis N., Martella A., Otto T., Luce F., Calaon D., Cottica D., Morhange C., 2024. Holocene Sea-level impacts on Venice Lagoon’s coastal wetlands. Global and Planetary Change 236, 104426. https://doi.org/10.1016/j.gloplacha.2024.104426">https://doi.org/10.1016/j.gloplacha.2024.104426.
Kovač M., Barath I., Harzhauser M., Hlavaty I., Hudackova N., 2004. Miocene depositional systems and sequence stratigraphy of the Vienna Basin. CFS Courier Forschungsinstitut Senckenberg 246, 187–212.
Magri M., Bondavalli C., Bartoli M., Benelli S., Žilius M., Petkuviene J., Vybernaite- Lubiene I., Vaičiūtė D., Grinienė E., Zemlys P., Morkūnė R., Daunys D., Solovjova S., Bučas M., Gasiūnaitė Z.R., Baziukas-Razinkovas A., Bodini A., 2024. Temporal and spatial differences in nitrogen and phosphorus biogeochemistry and ecosystem functioning of a hypertrophic lagoon (Curonian Lagoon, SE Baltic Sea) revealed via Ecological Network Analysis. The Science of the total environment 921, 171070. https://doi.org/10.1016/j.scitotenv.2024.171070">https://doi.org/10.1016/j.scitotenv.2024.171070.
McGee W.J., 1890. The southern extension of the Appomattox Formation. American Journal of Science 3/235, 15–41. https://doi.org/10.2475/ajs.s3-40.235.15">https://doi.org/10.2475/ajs.s3-40.235.15.
Miall A.D., 2006. The Geology of Fluvial Deposits. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03237-4">https://doi.org/10.1007/978-3-662-03237-4.
Morsilli M., Pomar L., 2012. Internal waves vs. surface storm waves: a review on the origin of hummocky cross‐stratification. Terra Nova 24/4, 273–282. https://doi.org/10.1111/j.1365-3121.2012.01070.x">https://doi.org/10.1111/j.1365-3121.2012.01070.x.
Neubauer T.A., Harzhauser M., Kroh A., Georgopoulou E., Mandic O., 2015. A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth-Science Reviews 143, 98–116. https://doi.org/10.1016/j.earscirev.2015.01.010">https://doi.org/10.1016/j.earscirev.2015.01.010.
Pereira Coutinho M.T., Brito A.C., Pereira P., Goncalves A.S., Moita M.T., 2012. A phytoplankton tool for water quality assessment in semi-enclosed coastal lagoons: Open vs closed regimes. Estuarine, Coastal and Shelf Science 110, 134–146. https://doi.org/10.1016/j.ecss.2012.04.007">https://doi.org/10.1016/j.ecss.2012.04.007.
Piller W.E., Harzhauser M., Mandic O., 2007. Miocene Central Paratethys stratigraphy – current status and future directions. strat 4/2–3, 151–168. https://doi.org/10.29041/strat.04.2.09">https://doi.org/10.29041/strat.04.2.09.
Popov S.V., Rogl F., Rozanov A.Y., Steininger F.F., Shcherba I.G., and Kovač M., 2004. Lithological-Paleogeographic maps of the Paratethys. 10 maps Late Eocene to Pliocene. Courier Forsch.-Inst. Senckenberg 250, 1–46.
Richard T., Dagrain F., Poyol E., Detournay E., 2012. Rock strength determination from scratch tests. Engineering Geology 147–148, 91–100. https://doi.org/10.1016/j.enggeo.2012.07.011">https://doi.org/10.1016/j.enggeo.2012.07.011.
Rubio B., Lopez-Perez A.E., 2024. Exploring the Genesis of Glaucony and Verdine Facies for Paleoenvironmental Interpretation: A review. Sedimentary Geology. 461. 106579. https://doi.org/10.1016/j.sedgeo.2024.106579">https://doi.org/10.1016/j.sedgeo.2024.106579.
Ruman A., Ćorić S., Halasova E., Harzhauser M., Hudačkova N., Jamrich M., Palzer-Khomenko M., Kranner M., Mandic O., Radionova E.P., Rybar S., Šimo V., Šujan M., Kovač M., 2021. The “Rzehakia beds” on the northern shelf of the Pannonian Basin: biostratigraphic and palaeoenvironmental implications. Facies 67/1. https://link.springer.com/article/10.1007/s10347-020-00609-6.
Schultz L.G., 1964. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. Professional Paper 391C. https://pubs.usgs.gov/publication/pp391C.
Siedl W., Strauss P., Sachsenhofer R.F., Harzhauser M., Kuffner T., Kranner M., 2020. Revised Badenian (middle Miocene) depositional systems of the Austrian Vienna Basin based on a new sequence stratigraphic framework. Austrian Journal of Earth Sciences 113/1, 87–110. https://doi.org/10.17738/ajes.2020.0006">https://doi.org/10.17738/ajes.2020.0006.
Skerbisch L., Misch D., Drews M., 2023. Regional mudstone compaction trends in the Vienna Basin: top seal assessment and implications for uplift history. Int J Earth Sci (Geol Rundsch) 112, 1901–1921. https://doi.org/10.1007/s00531-023-02331-4">https://doi.org/10.1007/s00531-023-02331-4.
Surdam R.C., 1997. Seals, Traps, and the Petroleum System. American Association of Petroleum Geologists. https://doi.org/10.1306/M67611">https://doi.org/10.1306/M67611.
Talman S.G., Keough M.J., 2001. Impact of an exotic clam, Corbula gibba, on the commercial scallop Pecten fumatus in Port Phillip Bay, south-east Australia: evidence of resource-restricted growth in a subtidal environment. Marine Ecology Progress Series 221, 135–143. https://doi.org/10.3354/meps221135">https://doi.org/10.3354/meps221135.
Vidal L., Rodriguez-Gallego L., Conde D., Martinez-Lopez W., Bonilla S., 2007. Biomass of autotrophic picoplankton in subtropical coastal lagoons: Is it relevant? Limnetica 26/2, 441–452. https://doi.org/10.23818/limn.26.37">https://doi.org/10.23818/limn.26.37.
Worden R.H., 2023. Value of core for reservoir and top-seal analysis for carbon capture and storage projects. Geological Society, London, Special Publications, Volume 527, 365–385. https://doi.org/10.1144/SP527-2022-38">https://doi.org/10.1144/SP527-2022-38.