Have a personal or library account? Click to login
Seismic velocity structure and seismotectonics of the southern Vienna Basin (Austria) with a large-N nodal deployment Cover

Seismic velocity structure and seismotectonics of the southern Vienna Basin (Austria) with a large-N nodal deployment

Open Access
|Aug 2025

References

  1. Apoloner M-T., Bokelmann G., Bianchi I., Brückl E., Hausmann H., Mertl S., Meurers R., 2014. The 2013 Earthquake Series in the southern Vienna Basin: location. Advances in Geosciences 36, 77–80. https://doi.org/10.5194/adgeo-36-77-2014">https://doi.org/10.5194/adgeo-36-77-2014
  2. Aschk K., 2005. IGME 5000: 1:5 Million International Geological Map of Europe and Adjacent Areas, Bundesanstalt für Geowissenschaften und Rohstoffe
  3. Catchings R.D., Goldman M.R., Steidl J.H., Chan J.H., Allam A.A., Criley C.J., Ma Z., Langermann D.S., Huddleston G.J., McEvilly A.T., Mongovin D.D., Berg E.M., Ben-Zion Y., 2020. Nodal seismograph recordings of the 2019 Ridgecrest earthquake sequence. Seismological Research Letters 91/6, 3622–3633. https://doi.org/10.1785/0220200203">https://doi.org/10.1785/0220200203
  4. Chovanová Z., Kristek J., 2018. A local magnitude scale for Slovakia, central Europe. Bulletin of the Seismological Society of America, 108/5A, 2756–2763. https://doi.org/10.1785/0120180059">https://doi.org/10.1785/0120180059
  5. Decker K., Peresson, H., Hinsch, R., 2005. Active tectonics and quaternary basin formation along the Vienna Basin Transform fault. Quat. Sci. Rev. 44, 305–320. https://doi.org/10.1016/j.quascirev.2004.04.012">https://doi.org/10.1016/j.quascirev.2004.04.012
  6. Dunham A., Kiser E., 2020. Local earthquake tomography of the central Oregon forearc using a large-N, short duration, nodal array. Earth and Planetary Science Letters 551, https://doi.org/10.1016/j.epsl.2020.116559">https://doi.org/10.1016/j.epsl.2020.116559
  7. Estève C., Liu Y., Koulakov I., Schaeffer A. J., Audet P., 2022. Seismic evidence for a weakened thick crust at the Beaufort Sea continental margin. Geophysical Research Letters 49/e2022GL100158. https://doi.org/10.1029/2022GL100158">https://doi.org/10.1029/2022GL100158
  8. Esteve C., Lu Y., Gosselin J. M., Kramer R., Bokelmann G., Götzl G., 2025. Seismic imaging of the southern Vienna Basin (Austria) using probabilistic ambient-noise tomography. Geophysical prospecting (under review). https://doi.org/10.22541/essoar.174703370.08315532/v1">https://doi.org/10.22541/essoar.174703370.08315532/v1
  9. Gosselin J.M., Biegel K., Hamidbeygi M., Dettmer J., 2023. Improvements in the regional earthquake focal mechanism catalogue for southwestern Yukon. In: Yukon Exploration and Geology 2022, K.E. MacFarlane (ed.), Yukon Geological Survey, 63–76.
  10. Gutdeutsch R., Hammerl C., Mayer I., and Vocelka K., 1987. Erdbeben als historisches Ereignis – Die Rekonstruktion des niederösterreichischen Erdbebens von 1590, Springer Verlag Wien, Heidelberg, New York, 233 pp.
  11. Froitzheim N., Plašienka D., Schuster R., 2008. Alpine tectonics of the Alps and Western Carpathians, The Geology of Central Europe Volume 2: Mesozoic and Cenozoic, T. McCann. https://doi.org/10.1144/CEV2P.6">https://doi.org/10.1144/CEV2P.6
  12. Hausmann H., Hoyer S., Schurr B., Brückl E., Houseman G., Stuart G., 2010. New seismic data improve earthquake location in the Vienna Basin area, Austria. Austrian Journal of Earth Sciences 103/2, 2–14 Hinsch R., Decker K., Wagreich M., 2004. A short review of environmental tectonics of the Vienna Basin and the Rhine Graben area. Austrian Journal of Earth Sciences 94, 6–15
  13. Hinsch R., Decker K., 2011. Seismic slip rates, potential subsurface rupture areas and seismic potential of the Vienna Basin Transfer Fault. International Journal of Earth Science, 100, 1925–1935. https://doi.org/10.1007/s00531-010-0613-3">https://doi.org/10.1007/s00531-010-0613-3
  14. Hintersberger E., Decker K., Lomax J., 2010. Largest earthquake north of the Alps excavated within the Vienna Basin, Austria, in: European Seismological Commission (ESC) 32nd General Assembly, Montpellier, France, Abstract T/Sd2/TU/05
  15. Jiwani-Brown E.A., Koulakov I., Muñoz-Burbano F., Pacheco J.F., Mora M.M., Savard G., Lupi M., 2024. Subsurface anatomy of the Irazú– Turrialba volcanic complex, inferred from the integration of local and ambient seismic tomographic methods, Geophysical Journal International 237/2, 679–696, https://doi.org/10.1093/gji/ggae054">https://doi.org/10.1093/gji/ggae054
  16. Koulakov I., 2009. LOTOS code for local earthquake tomographic inversion: Benchmarks for testing tomographic algorithms. Bulletin of the Seismological Society of America 99/1, 194–214. https://doi.org/10.1785/0120080013354">https://doi.org/10.1785/0120080013354
  17. Koulakov I., D’Auria L., Prudencio J., Cabrera-Pérez I., Barrancos J., Padilla G. D., et al., 2023. Local earthquake seismic tomography reveals the link between crustal structure and volcanism in Tenerife (Canary Islands). Journal of Geophysical Research: Solid Earth 128/e2022JB025798. https://doi.org/10.1029/2022JB025798">https://doi.org/10.1029/2022JB025798
  18. Koulakov I., Sobolev S. V., 2006. Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data. Geophysical Journal International 164/1, 218–235. https://doi.org/10.1111/j.1365-246X.2005.02791.x">https://doi.org/10.1111/j.1365-246X.2005.02791.x
  19. Lenhardt W., Freudenthaler C., Lippitsch R., Fiegweil E., 2007. Focal- depth distributions in the Austrian Eastern Alps based on macroseismic data. Austrian Journal of Earth Sciences, 100, 66–79
  20. Levi N., Weissl M., Decker K., 2024. Assessing the hazard of fault triggering by deep geothermal energy production in an active fault system via a 1D stress model and 3D fault mapping. International Journal of Earth Sciences (Geol Rundsch) 113, 583–609, https://doi.org/10.1007/s00531-023-02383-6">https://doi.org/10.1007/s00531-023-02383-6
  21. Mousavi S.M., Ellsworth W.L., Zhu W., Chuang L.Y., Beroza G.C., 2020. Earthquake transformer — an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications 11, 3952. https://doi.org/10.1038/s41467-020-17591-w">https://doi.org/10.1038/s41467-020-17591-w
  22. Paige C.C., Saunders M.A., 1982. Lsqr: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8/1, 43–71. https://doi.org/10.1145/355984.355989">https://doi.org/10.1145/355984.355989
  23. Sachsenhofer R.F., Misch D., Rainer T., 2025. The Vienna Basin: petroleum systems, storage and geothermal potential. Geological Society, London, Special Publications 555/1, https://doi.org/10.1144/SP555-2023-205">https://doi.org/10.1144/SP555-2023-205
  24. Schmid F., Schlindwein V., Koulakov I., Plötz A., Scholz J.-R., 2017. Magma plumbing system and seismicity of an active mid-ocean ridge volcano. Scientific Reports 7/42949, https://doi.org/10.1038/srep42949">https://doi.org/10.1038/srep42949
  25. Schön J., 2015. Physical properties of rocks: Fundamentals and Principles of Petrophysics. Developments in Petroleum Science, Vol. 65, Amsterdam
  26. Shearer P.M., Meng H., Fan W., 2023. Earthquake detection using a nodal array on the San Jacinto fault in California: Evidence for high foreshock rates preceding many events. Journal of Geophysical Research: Solid Earth 128, e2022JB025279. https://doi.org/10.1029/2022JB025279">https://doi.org/10.1029/2022JB025279
  27. Um J., Thurber C., 1987. A fast algorithm for two-point seismic ray tracing. Bulletin of the Seismological Society of America 77/3, 972–986. https://doi.org/10.1785/403BSSA077003097">https://doi.org/10.1785/403BSSA077003097
  28. Vasyura-Bathke H., Dettmer J., Steinberg A., Heimann S., Isken M.P., Zielke O., Mai P.M., Sudhaus H., Jónsson S., 2020. The Bayesian Earthquake Analysis Tool. Seismological Research Letters 2020 91/2A, 1003–1018. https://doi.org/10.1785/0220190075">https://doi.org/10.1785/0220190075
  29. Wessel P., Smith W.H.F., Scharroo R., Luis J., Wobbe F., 2013. Generic mapping tools: Improved version released. Eos 94, 409–410. https://doi.org/10.1002/2013EO450001">https://doi.org/10.1002/2013EO450001
  30. Woolam J., Münchmeyer J., Tilmann F., Rietbrock A., Lange D., Bornstein T., Diehl T., Giuschi C., Haslinger F., Jozinovic D., Michelini A., Saul J., Soto H., 2022. SeisBench – A Toolbox for Machine Learning in Seismology. Seismological Research Letters. https://doi.org/10.1785/0220210324">https://doi.org/10.1785/0220210324
  31. Zhu C., Beroza G.C., 2019. PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International 216/1, 261–273, https://doi.org/10.1093/gji/ggy423">https://doi.org/10.1093/gji/ggy423
  32. Zhu W., McBrearty I.W., Mousavi S.M., Ellsworth W.L., Beroza G.C., 2022. Earthquake phase association using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth 127/e2021JB023249. https://doi.org/10.1029/2021JB023249">https://doi.org/10.1029/2021JB023249
DOI: https://doi.org/10.17738/ajes.2025.0011 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 189 - 203
Submitted on: May 15, 2025
Accepted on: Jul 18, 2025
Published on: Aug 7, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Clement Esteve, Jeremy M. Gosselin, Yang Lu, Götz Bokelmann, Gregor Götzl, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.