Aurivillius B., 1964. The Crystal Structure of Bismuth Oxide Fluoride II. A Refinement of the Previously Published Structure. Acta Chemica Scandinavica, 18/8, 1823–1830. DOI:10.3891/acta.chem. scand.18-1823
Bannister F.A., Hey M.H., 1934. The crystal-structure and optical properties of matlockite (PbFCl). Mineralogical Magazine and Journal of the Mineralogical Society 23/146, 587–597. https://doi.org/10.1180/minmag.1934.023.146.02">https://doi.org/10.1180/minmag.1934.023.146.02
Bannister F.A., Hey M.H., 1935. The crystal-structure of the bismuth oxyhalides. Mineralogical Magazine and Journal of the Mineralogical Society 24/149, 49–58. https://doi.org/10.1180/minmag.1935.024.149.01">https://doi.org/10.1180/minmag.1935.024.149.01
Bunda S., Bunda V., 2014. Raman Spectra of Bismuth Oxyhalide Single Crystals. Acta Physica Polonica A126, 272–273. https://doi.org/10.12693/APhysPolA.126.272">https://doi.org/10.12693/APhysPolA.126.272
Burgio L., 2024. Bismuth white (bismuth oxychloride) and its use in portrait miniatures painted by George Engleheart. Minerals 14, 723. https://doi.org/10.3390/min14070723">https://doi.org/10.3390/min14070723
Dolomanova E.I., Senderova V.M., Yanchenko M.T., 1962. Zavaritskite (BiOF), a new mineral from the group of oxyfluorides. Dokl. Akad. Nauk Ukr. SSR, 1962, 146/3, 680–682.
Domeyko I., 1876. Daubréeite (oxychlorure de bismuth) – espèce minérale nouvelle. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 82, 922–923.
Gaines R.V., Skinner H.C.W., Foord E.E., Mason B., Rosenzweig A., 1997. Dana’s New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. Wiley-Interscience, New. 8th Revised ed., 1819pp.
Galy J., Meunier G., Andersson S., Åström A., 1975. Stéréochimie des eléments comportant des paires non liées: Ge (II), As (III), Se (IV), Br (V), Sn (II), Sb (III), Te (IV), I (V), Xe (VI), Tl (I), Pb (II), et Bi (III) (oxydes, fluorures et oxyfluorures). Journal of Solid State Chemistry 13/1–2, 142–159. https://doi.org/10.1016/0022-4596(75)90092-4">https://doi.org/10.1016/0022-4596(75)90092-4
Gordon M.N., Junkers L.S., Googasian J.S., Mathiesen J.K., Zhan X., Morgan D.G., Jensen K.M.Ø., Skrabalak. S.E., 2024. Insights into the nucleation and growth of BiOCl nanoparticles by in situ X-ray pair distribution function analysis and in situ liquid cell TEM. Nanoscale 16, 15544–15557. https://doi.org/10.1039/D4NR01749H">https://doi.org/10.1039/D4NR01749H
He Y., Men D., Pang Y., Guo H., Gu J., Li A., 2024. Sample Fabrication of BiOCl Nanosheets with Low Specific Surface Area for Efficient Photocatalytic Degradation of Organic Wastewater. Langmuir 40/32, 16900–16908. https://doi.org/10.1021/acs.langmuir.4c01507">https://doi.org/10.1021/acs.langmuir.4c01507
IMA Mineral List, 2025. IMA Database of Mineral Properties. Created and maintained by the RRUFF Project in partnership with the IMA. (https://rruff.info/ima/) as of 2025.03.13.
Liebich B.W., Nicollin D., 1977. Refinement of the PbFCl types BaFI, BaFBr and CaFCl. Acta Crystallographica B33/9, 2790–2794. https://doi.org/10.1107/S0567740877009480">https://doi.org/10.1107/S0567740877009480
Mountain E. D., 1935. Two new bismuth minerals from South Africa. Mineralogical magazine and journal of the Mineralogical Society 24/149, 59–64. https://doi.org/10.1180/minmag.1935.024.149.02">https://doi.org/10.1180/minmag.1935.024.149.02
Neubauer F., 2005. Structural control of mineralization in metamorphic core complexes. In: Mao J., Bierlein F.P. (editors) Mineral deposit research: meeting the global challenge. Springer, Berlin, 561–564. https://doi.org/10.1007/3-540-27946-6_144">https://doi.org/10.1007/3-540-27946-6_144
Orgel L.E., 1959. 769. The stereochemistry of B subgroup metals. Part II. The inert pair. Journal of the Chemical Society (Resumed), 3815–3819. https://doi.org/10.1039/JR9590003815">https://doi.org/10.1039/JR9590003815
Pare B., Joshi R., Mehta S., Solanki V.S., Gupta R., Agarwal N., Yadav V.K., 2024. Preparation and characterisation of BiOCl nano photocatalyst for the remediation of wastewater under LED light. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2024.2442086">https://doi.org/10.1080/03067319.2024.2442086
Sauvage M., 1974. Refinement of the structures of SrFCl and BaFCl. Acta Crystallographica B30/11, 2786–2787. https://doi.org/10.1107/S0567740874008132">https://doi.org/10.1107/S0567740874008132
Shimazaki H., Miyawaki R., Yokoyama K., Matsubara S., Yang Z., 2008. Zhangpeishanite, BaFCl, a new mineral in fluorite from Bayan Obo, Inner Mongolia, China. European Journal of Mineralogy 20/6, 1141–1144. https://doi.org/10.1127/0935-1221/2009/0021-1888">https://doi.org/10.1127/0935-1221/2009/0021-1888
Testa F.J., Cooke D.R., Zhang L-J., Mas G.R., 2016. Bismoclite (BiOCl) in the San Francisco de los Andes Bi-Cu-Au Deposit, Argentina. First Occurrence of a Bismuth Oxychloride in a Magmatic-Hydrothermal Breccia Pipe and Its Usefulness as an Indicator Phase in Mineral Exploration. Minerals 6/3, 62. https://doi.org/10.3390/min6030062">https://doi.org/10.3390/min6030062
Unuma T., Sasaki T., Yamaki K., Irie A., Ishida H., Kato T., 2020. Dielectric properties of crystalline BiOCl in the terahertz region. OSA Continuum 3/9, 2646–2652. https://doi.org/10.1364/OSAC.399616">https://doi.org/10.1364/OSAC.399616
Voudouris P., Melfos V., Mavrogonatos C., Photiades A., Moraiti E., Rieck B., Kolitsch U., Tarantola A., Scheffer C., Morin D., et al. 2021. The Lavrion Mines: A Unique Site of Geological and Mineralogical Heritage. Minerals, 11/1, 76, 1–22. https://doi.org/10.3390/min11010076">https://doi.org/10.3390/min11010076
Wang Q., Xie M., Min X., Huang Z., Liu Y., Wu X., Fang M., 2019. Synthesis, structural, and luminescence properties of BiOCl:Dy3+ single- component white-light-emitting phosphor for n-UV w-LEDs. Chemical Physics Letters 727, 72–77. https://doi.org/10.1016/j.cplett.2019.04.047">https://doi.org/10.1016/j.cplett.2019.04.047
Wu Q., Luo L., Li W., Peng Du P., 2023. Construction of Er3+-activated BiOCl upconverting microplates with boosted visible-near-infrared light driven photocatalytic activity for tetracycline degradation. Journal of Alloys and Compounds, 932, 167617. https://doi.org/10.1016/j.jallcom.2022.167617">https://doi.org/10.1016/j.jallcom.2022.167617
Xu L., Yu J.C., Wang Y., 2024. Recent advances on bismuth oxyhalides for photocatalytic CO2 reduction. Journal of Environmental Sciences 140, 183–203. https://doi.org/10.1016/j.jes.2023.07.002">https://doi.org/10.1016/j.jes.2023.07.002
Zeug M., Nasdala L., Wanthanachaisaeng B., Balmer W.A., Corfu F., Wildner M., 2018. Blue zircon from Ratanakiri, Cambodia. Journal of Gemmology, 36/2, 112–132. 10.15506/JoG.2018.36.2.112">http://dx.doi.org/10.15506/JoG.2018.36.2.112
Zhang K., Liang J., Wang S., Liu J., Ren K., Zheng X., Luo H., Peng Y., Zou X., Bo X., Li J., Yu X., 2012. BiOCl Sub-Microcrystals Induced by Citric Acid and Their High Photocatalytic Activities. Crystal Growth Design, 12, 793–803. https://doi.org/10.1021/cg201112j">https://doi.org/10.1021/cg201112j