Have a personal or library account? Click to login
New single-crystal X-ray diffraction and Raman spectroscopic data of natural bismoclite BiOCl Cover

New single-crystal X-ray diffraction and Raman spectroscopic data of natural bismoclite BiOCl

Open Access
|Jun 2025

References

  1. Auer C., 2019. Die Mineralien der Wolfsgrube bei Seiz im Liesingtal. Der Steirische Mineralog 34, 5–11.
  2. Aurivillius B., 1964. The Crystal Structure of Bismuth Oxide Fluoride II. A Refinement of the Previously Published Structure. Acta Chemica Scandinavica, 18/8, 1823–1830. DOI:10.3891/acta.chem. scand.18-1823
  3. Bannister F.A., Hey M.H., 1934. The crystal-structure and optical properties of matlockite (PbFCl). Mineralogical Magazine and Journal of the Mineralogical Society 23/146, 587–597. https://doi.org/10.1180/minmag.1934.023.146.02">https://doi.org/10.1180/minmag.1934.023.146.02
  4. Bannister F.A., Hey M.H., 1935. The crystal-structure of the bismuth oxyhalides. Mineralogical Magazine and Journal of the Mineralogical Society 24/149, 49–58. https://doi.org/10.1180/minmag.1935.024.149.01">https://doi.org/10.1180/minmag.1935.024.149.01
  5. Brese N.E, O’Keeffe M., 1991. Bond-Valence Parameters for Solids. Acta Crystallographica B47, 192–197. https://doi.org/10.1107/S0108768190011041">https://doi.org/10.1107/S0108768190011041
  6. Bruker 2021. APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bunda S., Bunda V., 2014. Raman Spectra of Bismuth Oxyhalide Single Crystals. Acta Physica Polonica A126, 272–273. https://doi.org/10.12693/APhysPolA.126.272">https://doi.org/10.12693/APhysPolA.126.272
  8. Burgio L., 2024. Bismuth white (bismuth oxychloride) and its use in portrait miniatures painted by George Engleheart. Minerals 14, 723. https://doi.org/10.3390/min14070723">https://doi.org/10.3390/min14070723
  9. Chesnokov B.V., Nishanbaev T.P., Bazhenova L.F., 1990. Rorisite CaFCl – novyj mineral. Zapiski Vsesoûznogo Mineralogičeskogo Obŝestva 119/3, 73–76.
  10. Dolomanova E.I., Senderova V.M., Yanchenko M.T., 1962. Zavaritskite (BiOF), a new mineral from the group of oxyfluorides. Dokl. Akad. Nauk Ukr. SSR, 1962, 146/3, 680–682.
  11. Domeyko I., 1876. Daubréeite (oxychlorure de bismuth) – espèce minérale nouvelle. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 82, 922–923.
  12. Gaines R.V., Skinner H.C.W., Foord E.E., Mason B., Rosenzweig A., 1997. Dana’s New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. Wiley-Interscience, New. 8th Revised ed., 1819pp.
  13. Galy J., Meunier G., Andersson S., Åström A., 1975. Stéréochimie des eléments comportant des paires non liées: Ge (II), As (III), Se (IV), Br (V), Sn (II), Sb (III), Te (IV), I (V), Xe (VI), Tl (I), Pb (II), et Bi (III) (oxydes, fluorures et oxyfluorures). Journal of Solid State Chemistry 13/1–2, 142–159. https://doi.org/10.1016/0022-4596(75)90092-4">https://doi.org/10.1016/0022-4596(75)90092-4
  14. Gordon M.N., Junkers L.S., Googasian J.S., Mathiesen J.K., Zhan X., Morgan D.G., Jensen K.M.Ø., Skrabalak. S.E., 2024. Insights into the nucleation and growth of BiOCl nanoparticles by in situ X-ray pair distribution function analysis and in situ liquid cell TEM. Nanoscale 16, 15544–15557. https://doi.org/10.1039/D4NR01749H">https://doi.org/10.1039/D4NR01749H
  15. Halappa P., Rajashekar H.M., Shivakumara C., 2019. Synthesis and structural characterization of orange red light emitting Sm3+ activated BiOCl phosphor for WLEDs applications. Journal of Alloys and Compounds, 785, 169–177. https://doi.org/10.1016/j.jallcom.2019.01.155">https://doi.org/10.1016/j.jallcom.2019.01.155
  16. He Y., Men D., Pang Y., Guo H., Gu J., Li A., 2024. Sample Fabrication of BiOCl Nanosheets with Low Specific Surface Area for Efficient Photocatalytic Degradation of Organic Wastewater. Langmuir 40/32, 16900–16908. https://doi.org/10.1021/acs.langmuir.4c01507">https://doi.org/10.1021/acs.langmuir.4c01507
  17. Hübschle C.B., Sheldrick G.M., Dittrich B., 2011. ShelXle: a Qt graphical user interface for SHELXL. Journal of Applied Crystallography 44, 1281–1284. https://doi.org/10.1107/S0021889811043202">https://doi.org/10.1107/S0021889811043202
  18. IMA Mineral List, 2025. IMA Database of Mineral Properties. Created and maintained by the RRUFF Project in partnership with the IMA. (https://rruff.info/ima/) as of 2025.03.13.
  19. Keramidas K.G., Voutsas G.P., Rentzeperis P.I., 1993. The crystal structure of BiOCl. Zeitschrift für Kristallographie 205, 35–40. https://doi:10.1524/zkri.1993.205.part-1.35
  20. Kulikov I.V., Devyatov V.E., Gromov A.V., 1982. A new natural compound calcium-fluoride-chloride. Izvestiya Vysshikh Uchebnykh Zavedenii. Geologiya i Razvedka 25, 120–122.
  21. Liebich B.W., Nicollin D., 1977. Refinement of the PbFCl types BaFI, BaFBr and CaFCl. Acta Crystallographica B33/9, 2790–2794. https://doi.org/10.1107/S0567740877009480">https://doi.org/10.1107/S0567740877009480
  22. Liu W-W., Peng R-F., 2020. Recent advances of bismuth oxychloride photocatalytic material: Property, preparation and performance enhancement. Journal of Electronic Science and Technology 18, 100020. https://doi.org/10.1016/j.jnlest.2020.100020">https://doi.org/10.1016/j.jnlest.2020.100020
  23. Mountain E. D., 1935. Two new bismuth minerals from South Africa. Mineralogical magazine and journal of the Mineralogical Society 24/149, 59–64. https://doi.org/10.1180/minmag.1935.024.149.02">https://doi.org/10.1180/minmag.1935.024.149.02
  24. Nalawade Y., Pepper J., Harvey A., Griffin A., Caffrey D., Kelly A.G., Coleman J.N., 2020. All-Printed Dielectric Capacitors from High-Permittivity, Liquid-Exfoliated BiOCl Nanosheets. Applied Electronic Materials 2/10, 3233–3241. https://doi.org/10.1021/acsaelm.0c00561">https://doi.org/10.1021/acsaelm.0c00561
  25. Neubauer F., 2005. Structural control of mineralization in metamorphic core complexes. In: Mao J., Bierlein F.P. (editors) Mineral deposit research: meeting the global challenge. Springer, Berlin, 561–564. https://doi.org/10.1007/3-540-27946-6_144">https://doi.org/10.1007/3-540-27946-6_144
  26. Orgel L.E., 1959. 769. The stereochemistry of B subgroup metals. Part II. The inert pair. Journal of the Chemical Society (Resumed), 3815–3819. https://doi.org/10.1039/JR9590003815">https://doi.org/10.1039/JR9590003815
  27. Pare B., Joshi R., Mehta S., Solanki V.S., Gupta R., Agarwal N., Yadav V.K., 2024. Preparation and characterisation of BiOCl nano photocatalyst for the remediation of wastewater under LED light. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2024.2442086">https://doi.org/10.1080/03067319.2024.2442086
  28. Pasero M., Perchiazzi N., 1996. Crystal structure refinement of matlockite. Mineralogical Magazine 60, 833–836. https://doi.org/10.1180/minmag.1996.060.402.15">https://doi.org/10.1180/minmag.1996.060.402.15
  29. Rieck B., Kolitsch U., Voudouris P., Giester G., Tzeferis P., 2018. Weitere Neufunde aus Lavrion, Griechenland. Mineralien Welt, 29/5, 32–77.
  30. Rieck B., Kolitsch U., Voudouris P., Giester G., Tzeferis P., 2022. Neubestimmung aus dem Bergbaubezirk Lavrion, Griechenland. Mineralien Welt 33/5, 6–20.
  31. Sauvage M., 1974. Refinement of the structures of SrFCl and BaFCl. Acta Crystallographica B30/11, 2786–2787. https://doi.org/10.1107/S0567740874008132">https://doi.org/10.1107/S0567740874008132
  32. Sheldrick G.M., 2015. Crystal structure refinement with SHELXL. Acta Crystallographica C71, 3–8. https://doi.org/10.1107/S2053229614024218">https://doi.org/10.1107/S2053229614024218
  33. Shimazaki H., Miyawaki R., Yokoyama K., Matsubara S., Yang Z., 2008. Zhangpeishanite, BaFCl, a new mineral in fluorite from Bayan Obo, Inner Mongolia, China. European Journal of Mineralogy 20/6, 1141–1144. https://doi.org/10.1127/0935-1221/2009/0021-1888">https://doi.org/10.1127/0935-1221/2009/0021-1888
  34. Testa F.J., Cooke D.R., Zhang L-J., Mas G.R., 2016. Bismoclite (BiOCl) in the San Francisco de los Andes Bi-Cu-Au Deposit, Argentina. First Occurrence of a Bismuth Oxychloride in a Magmatic-Hydrothermal Breccia Pipe and Its Usefulness as an Indicator Phase in Mineral Exploration. Minerals 6/3, 62. https://doi.org/10.3390/min6030062">https://doi.org/10.3390/min6030062
  35. Tian Y., Guo C.F., Guo Y., Wang Q., Liu Q., 2012. BiOCl nanowire with hierarchical structure and its Raman features. Applied Surface Science, 258, 1949–1954. https://doi.org/10.1016/j.apsusc.2011.06.137">https://doi.org/10.1016/j.apsusc.2011.06.137
  36. Unuma T., Sasaki T., Yamaki K., Irie A., Ishida H., Kato T., 2020. Dielectric properties of crystalline BiOCl in the terahertz region. OSA Continuum 3/9, 2646–2652. https://doi.org/10.1364/OSAC.399616">https://doi.org/10.1364/OSAC.399616
  37. Voudouris P., Melfos V., Mavrogonatos C., Photiades A., Moraiti E., Rieck B., Kolitsch U., Tarantola A., Scheffer C., Morin D., et al. 2021. The Lavrion Mines: A Unique Site of Geological and Mineralogical Heritage. Minerals, 11/1, 76, 1–22. https://doi.org/10.3390/min11010076">https://doi.org/10.3390/min11010076
  38. Wang Q., Xie M., Min X., Huang Z., Liu Y., Wu X., Fang M., 2019. Synthesis, structural, and luminescence properties of BiOCl:Dy3+ single- component white-light-emitting phosphor for n-UV w-LEDs. Chemical Physics Letters 727, 72–77. https://doi.org/10.1016/j.cplett.2019.04.047">https://doi.org/10.1016/j.cplett.2019.04.047
  39. Weil M., Kubel F., 2001. Matlockite-type PbFI. Acta Crystallographica E57/9, i80-i81. https://doi.org/10.1107/S1600536801013678">https://doi.org/10.1107/S1600536801013678
  40. Wu Q., Luo L., Li W., Peng Du P., 2023. Construction of Er3+-activated BiOCl upconverting microplates with boosted visible-near-infrared light driven photocatalytic activity for tetracycline degradation. Journal of Alloys and Compounds, 932, 167617. https://doi.org/10.1016/j.jallcom.2022.167617">https://doi.org/10.1016/j.jallcom.2022.167617
  41. Xu Z., Zhang C., Zhang Y., Gu Y., An Y., 2022. BiOCl-based photocatalysts: Synthesis methods, structure, property, application, and perspective. Inorganic Chemistry Communications, 138, 109277. https://doi.org/10.1016/j.inoche.2022.109277">https://doi.org/10.1016/j.inoche.2022.109277
  42. Xu L., Yu J.C., Wang Y., 2024. Recent advances on bismuth oxyhalides for photocatalytic CO2 reduction. Journal of Environmental Sciences 140, 183–203. https://doi.org/10.1016/j.jes.2023.07.002">https://doi.org/10.1016/j.jes.2023.07.002
  43. Yatimov U.A., Belogub E.V., Shilovskikh V.V., Blinov I.A., 2022. Zavaritskite from Sulfide-Magnetite Ore of the Aktash Skarn Deposit, Western Karamazar. Geology of Ore Deposits 64/7, 513–518. https://doi.org/10.1134/S107570152207011X">https://doi.org/10.1134/S107570152207011X
  44. Zeug M., Nasdala L., Wanthanachaisaeng B., Balmer W.A., Corfu F., Wildner M., 2018. Blue zircon from Ratanakiri, Cambodia. Journal of Gemmology, 36/2, 112–132. 10.15506/JoG.2018.36.2.112">http://dx.doi.org/10.15506/JoG.2018.36.2.112
  45. Zhang K., Liang J., Wang S., Liu J., Ren K., Zheng X., Luo H., Peng Y., Zou X., Bo X., Li J., Yu X., 2012. BiOCl Sub-Microcrystals Induced by Citric Acid and Their High Photocatalytic Activities. Crystal Growth Design, 12, 793–803. https://doi.org/10.1021/cg201112j">https://doi.org/10.1021/cg201112j
DOI: https://doi.org/10.17738/ajes.2025.0007 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 133 - 139
Submitted on: Feb 19, 2025
Accepted on: Apr 29, 2025
Published on: Jun 19, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Irene Liebhart, Branko Rieck, Manuela Zeug, Gerald Giester, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.