Have a personal or library account? Click to login
Fault mirrors in the process zone of a seismogenic fault (Karawanks, Eastern Alps) Cover

Fault mirrors in the process zone of a seismogenic fault (Karawanks, Eastern Alps)

Open Access
|Jun 2025

References

  1. Agosta F., Aydin A., 2006. Architecture and deformation mechanism of a basin-bounding normal fault in Mesozoic platform carbonates, central Italy. Journal of Structural Geology, 28/8, 1445–1467. https://doi.org/10.1016/j.jsg.2006.04.006">https://doi.org/10.1016/j.jsg.2006.04.006
  2. Baqués V., Travé A., Labaume P., Benedicto A., Soliva R., 2011. Differences between pre-rift and syn-rift karsts in a major Neogene normal fault zone from petrological and geochemical analysis of their infillings. Documentos sobre el Terciario de Iberia a inicios del Siglo XXI, VII Congreso del Grupo Español del Terciario.
  3. Baroň I., Plan L., Sokol L., Grasemann B., Melichar R., Mitrovic I., Stemberk J., 2019a. Present-day kinematic behaviour of active faults in the Eastern Alps. Tectonophysics, 752, 1–23. https://doi.org/10.1016/j.tecto.2018.12.024">https://doi.org/10.1016/j.tecto.2018.12.024
  4. Baroň I., Sokol L., Melichar R., Plan L., 2019b. Gravitational and tectonic stress states within a deep-seated gravitational slope deformation near the seismogenic Periadriatic Line fault. Engineering Geology, 261. https://doi.org/10.1016/j.enggeo.2019.105284">https://doi.org/10.1016/j.enggeo.2019.105284
  5. Baroň I., Plan L., Grasemann B., Melichar R., Mitrović-Woodell I., Rowberry M., Scholz D., 2022a: Three large prehistoric earthquakes in the Eastern Alps evidenced by cave rupture and speleothem damage. Geomorphology, Volume 408. https://doi.org/10.1016/j.geomorph.2022.108242">https://doi.org/10.1016/j.geomorph.2022.108242
  6. Baroň I., Koktavý P., Trčka T., Rowberry M., Stemberk J., Balek J., Plan L., Melichar R., Diendorfer G., Macků, R., Škarvada, P., 2022b. Differentiating between artificial and natural sources of electromagnetic radiation at a seismogenic fault. Engineering Geology, 311, 106912. https://doi.org/10.1016/j.enggeo.2022.106912">https://doi.org/10.1016/j.enggeo.2022.106912
  7. Bauer F. K., Schermann O., 1984. Das Periadriatische Lineament in den Karawanken. Jahrbuch der Geologischen Bundesanstalt, Wien, 127, 299–305. https://opac.geologie.ac.at/ais312/dokumente/JB1273_299_A.pdf
  8. Billi A., 2003. Solution slip and separations on strike-slip fault zones: theory and application to the Mattinata Fault, Italy. Journal of Structural Geology, 25, 703–715. https://doi.org/10.1016/S0191-8141(02)00077-9">https://doi.org/10.1016/S0191-8141(02)00077-9
  9. Billi A., Toro G.D., 2008. Fault-related carbonate rocks and earthquake indicators: recent advances and future trends. In Landowe, S. J. and Hammler, G. M., editors, Structural Geology: New Research, 63–86. Nova Science Publishers, Inc.
  10. Billi A., 2010. Microtectonics of low-P low-T carbonate fault rocks. Journal of Structural Geology, 32, 1392–1402. https://doi.org/10.1016/j.jsg.2009.05.007">https://doi.org/10.1016/j.jsg.2009.05.007
  11. Blenkinsop T.G., 1991. Cataclasis and processes of particle size reduction. Pure and Applied Geophysics PAGEOPH, 136, 59–86. https://doi.org/10.1007/BF00878888">https://doi.org/10.1007/BF00878888
  12. Bögel H., 1975. Zur Literatur über die „Periadriatische Naht“. Verhandlungen der Geologischen Bundesanstalt, Wien, 2, 163–199.
  13. Brodsky E.E., Rowe C.D., Meneghini F., Moore J.C., 2009. A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake. Journal of Geophysical Research: Solid Earth, 114. https://doi.org/10.1029/2008JB005633">https://doi.org/10.1029/2008JB005633
  14. Brune J.N., 2001. Fault-normal dynamic unloading and loading: An explanation for “Non-Gouge” rock powder and lack of fault-parallel shear bands along the San Andreas Fault. AGU, Fall Meeting Supplement, 82/47, F854.
  15. Clar E., 1953. Zur Einfügung der Hohen Tauern in den Ostalpenbau. Verhandlungen der Geologischen Bundesanstalt, Wien, 2, 93–104. https://opac.geologie.ac.at/wwwopacx/wwwopac.ashx?command=getcontent&server=images&value=VH1953_093_A.pdf
  16. Demurtas M., Fondriest M., Balsamo F., Clemenzi L., Storti F., Bistacchi A., Toro G.D., 2016. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy). Journal of Structural Geology, 90, 185–206. https://doi.org/10.1016/j.jsg.2016.08.004">https://doi.org/10.1016/j.jsg.2016.08.004
  17. Dor O., Ben-Zion Y., Rockwell T.K., Brune J., 2006. Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth and Planetary Science Letters, 245/3–4, 642–654. https://doi.org/10.1016/j.epsl.2006.03.034">https://doi.org/10.1016/j.epsl.2006.03.034
  18. Evans J.P., 1988. Deformation mechanisms in granitic rocks at shallow crustal levels. Journal of Structural Geology, 10, 437–443. https://doi.org/10.1016/0191-8141(88)90031-4">https://doi.org/10.1016/0191-8141(88)90031-4
  19. Ferraro F., Grieco D.S., Agosta F., Prosser G., 2018. Space-time evolution of cataclasis in carbonate fault zones. Journal of Structural Geology, 110, 45–64. https://doi.org/10.1016/j.jsg.2018.02.007">https://doi.org/10.1016/j.jsg.2018.02.007
  20. Fodor L., Jelen B., Márton E., Skaberne D., Čar J., Vrabec M., 1998. Miocene- Pliocene tectonic evolution of the Slovenian Periadriatic fault: Implications for Alpine-Carpathian extrusion models. Tectonics, 17, 690–709. https://doi.org/10.1029/98tc01605">https://doi.org/10.1029/98tc01605
  21. Fondriest M., Smith S.A., Toro G.D., Zampieri D., Mittempergher S., 2012. Fault zone structure and seismic slip localization in dolostones, an example from the Southern Alps, Italy. Journal of Structural Geology, 45, 52–67. https://doi.org/10.1016/j.jsg.2012.06.014">https://doi.org/10.1016/j.jsg.2012.06.014
  22. Fondriest, M., Smith, S. A. F., Candela, T., Nielsen, S. B., Mair, K., and Toro, G. D., 2013. Mirror-like faults and power dissipation during earthquakes. Geology, 41, 1175–1178. https://doi.org/10.1130/G34641.1">https://doi.org/10.1130/G34641.1
  23. Fondriest M., Aretusini S., Toro G.D., Smith S.A., 2015. Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy). Tectonophysics, 654, 56–74. https://doi.org/10.1016/j.tecto.2015.04.015">https://doi.org/10.1016/j.tecto.2015.04.015
  24. Fossen H., 2016. Structural Geology. Cambridge University Press, United Kingdom, 2nd edition. https://doi.org/10.1017/9781107415096">https://doi.org/10.1017/9781107415096
  25. Frisch W., Kuhlemann J., Dunkl I., Brügel A., 1998. Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics, 297. https://doi.org/10.1016/S0040-1951(98)00160-7">https://doi.org/10.1016/S0040-1951(98)00160-7
  26. Froitzheim N., Plasienka D., Schuster R., 2008. Alpine tectonics of the Alps and Western Carpathians. In The geology of Central Europe Volume 2: Mesozoic and Cenozoic, volume 2. The Geological Society of London, London. https://doi.org/10.1144/CEV2P.6">https://doi.org/10.1144/CEV2P.6
  27. Gratier J.P., Favreau P., Renard F., 2003. Modeling fluid transfer along California faults when integrating pressure solution crack sealing and compaction processes. Journal of Geophysical Research: Solid Earth, 108. https://doi.org/10.1029/2001JB000380">https://doi.org/10.1029/2001JB000380
  28. Gratier J.P., Gueydan F., 2007. Deformation in the presence of fluids and mineral reactions: Effect of fracturing and fluid-rock interaction on seismic cycles. In Handy, M.R., Hirth G., Hovius N., editors, Tectonic faults: Agents of change on a dynamic Earth, 319–356. The MIT Press, Cambridge.
  29. Han R., Hirose T., 2012. Clay-clast aggregates in fault gouge: An unequivocal indicator of seismic faulting at shallow depths? Journal of Structural Geology, 43, 92–99. https://doi.org/10.1016/j.jsg.2012.07.008">https://doi.org/10.1016/j.jsg.2012.07.008
  30. Hippertt J.F.M., 1993. ‘V’-pull-apart microstructures: a new shear-sense indicator. Journal of Structural Geology, 15, 1393–1403. https://doi.org/10.1016/0191-8141(93)90001-Q">https://doi.org/10.1016/0191-8141(93)90001-Q
  31. Jahne L., 1929. Geschichtliche Entwicklung der Bergbauten am Hochobir. Montanistische Rundschau, 21, 53–60.
  32. Kenkmann T., 2003. Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah. Earth and Planetary Science Letters, 214, 43–58. https://doi.org/10.1016/S0012-821X(03)00359-5">https://doi.org/10.1016/S0012-821X(03)00359-5
  33. Kober L., 1955. Bau und Entstehung der Alpen. Deuticke, Wien, 2nd edition.
  34. Kohlmayer N., Grasemann B., 2012. Quantitative characterisation of cataclasites using a statistical approach (analysis of variance). Austrian Journal of Earth Science, Vienna, 105/3,48–60. https://www.ajes.at/images/AJES/archive/Band%20105_3/kohlmayer_grasemann_ajes_105_3.pdf
  35. Koppensteiner S.J., 2021. Polished slickensides preserved in the Obir Caves (Austria) close to the Periadriatic Fault System. Master’s Thesis, University of Vienna, Austria, 221 pp. https://phaidra.univie.ac.at/download/o:1399461
  36. Krainer K., 1998. Mineralbildungen und Lagerstätten des Obir (Exkursion E3). Mitteilungen der Österreichischen Mineralogischen Gesellschaft, Wien, 143, 411–424. https://opac.geologie.ac.at/ais312/dokumente/Mitt_OEMinGes_143_411–424.pdf
  37. Kuo L.-W., Song S.-R., Suppe J., Yeh E.-C., 2016. Fault mirrors in seismically active fault zones: A fossil of small earthquakes at shallow depths. Geophysical Research Letters, 43, 1950–1959. https://doi.org/10.1002/2015GL066882">https://doi.org/10.1002/2015GL066882
  38. La Valle F., 2019. Factors controlling the thickness of fault damage zones in carbonates (Central Apennines, Italy). Master’s thesis, Università degli studi di Padova, Padova.
  39. Laubscher H.P., 1973. Alpen und Plattentektonik. Das Problem der Bewegungsdiffusion an kompressiven Plattengrenzen. Zeitschrift der Deutschen Geologischen Gesellschaft, 124. https://doi.org/10.1127/zdgg/124/1973/295">https://doi.org/10.1127/zdgg/124/1973/295
  40. Lin A., 2001. S-C fabrics developed in cataclastic rocks from the Nojima fault zone, Japan and their implications for tectonic history. Journal of Structural Geology, 23, 1167–1178. https://doi.org/10.1016/S0191-8141(00)00171-1">https://doi.org/10.1016/S0191-8141(00)00171-1
  41. Lin A., 2011. Seismic slip recorded by fluidized ultracataclastic veins formed in a coseismic shear zone during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 39, 547–550. https://doi.org/10.1130/G32065.1">https://doi.org/10.1130/G32065.1
  42. Loucks R.G., 1999. Paleocave carbonate reservoirs: Origins, burial- depth modifications, spacial complexity, and reservoir implications. AAPG Bulletin, 83, 1795–1834. https://doi.org/10.1306/E4FD426F-1732-11D7-8645000102C1865D">https://doi.org/10.1306/E4FD426F-1732-11D7-8645000102C1865D
  43. Mancktelow N.S., Stöckli D.F., Grollimund B., Müller W., Fügenschuh B., Viola G., Seward D., Villa I.M., 2001. The DAV and Periadriatic fault systems in the Eastern Alps south of the Tauern window. International Journal of Earth Sciences, 90. https://doi.org/10.1007/s005310000190">https://doi.org/10.1007/s005310000190
  44. Márton E., Trajanova M., Zupančič N., Jelen B., 2006. Formation, uplift and tectonic integration of a Periadriatic intrusive complex (Pohorje, Slovenia) as reflected in magnetic parameters and palaeomagnetic directions. Geophysical Journal International, 167. https://doi.org/10.1111/j.1365-246X.2006.03098.x">https://doi.org/10.1111/j.1365-246X.2006.03098.x
  45. Mitrović-Woodell I., Tesei T., Plan L., Habler G., Baroň I., Grasemann B., 2023. Deformation of columnar calcite within flowstone speleothem. Journal of Structural Geology, 174, 104924. https://doi.org/10.1016/j.jsg.2023.104924">https://doi.org/10.1016/j.jsg.2023.104924
  46. Müller W., Prosser G., Mancktelow N.S., Villa I.M., Kelley S.P., Viola G., Oberli F., 2001. Geochronological constraints on the evolution of the Periadriatic Fault System (Alps). International Journal of Earth Sciences, 90. https://doi.org/10.1007/s005310000187">https://doi.org/10.1007/s005310000187
  47. Nenna F., Aydin A., 2011. The formation and growth of pressure solution seams in clastic rocks: A field and analytical study. Journal of Structural Geology, 33, 633–643. https://doi.org/10.1016/j.jsg.2011.01.014">https://doi.org/10.1016/j.jsg.2011.01.014
  48. Ohl M., Plümper O., Chatzaras V., Wallis D., Vollmer C., Drury M., 2020. Mechanisms of fault mirror formation and fault healing in carbonate rocks. Earth and Planetary Science Letters, 530. https://doi.org/10.1016/j.epsl.2019.115886">https://doi.org/10.1016/j.epsl.2019.115886
  49. Otsuki K., Monzawa N., Nagase T., 2003. Fluidization and melting of fault gouge during seismic slip: Identification in the Nojima fault zone and implications for focal earthquake mechanisms. Journal of Geophysical Research: Solid Earth, 108. https://doi.org/10.1029/2001JB001711">https://doi.org/10.1029/2001JB001711
  50. Passchier C.W., Trouw R.A.J., 2005. Deformation mechanisms. Springer, Berlin, Heidelberg, 2nd edition.
  51. Payne, R. M., and Duan, B., 2016. Insights into pulverized rock formation from dynamic rupture models of earthquakes. Geophysical Journal International, 208, 715–723. https://doi.org/10.1093/gji/ggw436">https://doi.org/10.1093/gji/ggw436
  52. Piane C., Clennell M.B., Keller J.V., Giwelli A., Luzin V., 2017. Carbonate hosted fault rocks: A review of structural and microstructural characteristic with implications for seismicity in the upper crust. Journal of Structural Geology, 103, 17–36. https://doi.org/10.1016/j.jsg.2017.09.003">https://doi.org/10.1016/j.jsg.2017.09.003
  53. Power W. L., Tullis T.E., 1989. The relationship between slickenside surfaces in fine-grained quartz and the seismic cycle. Journal of Structural Geology, 11, 879–893. https://doi.org/10.1016/0191-8141(89)90105-3">https://doi.org/10.1016/0191-8141(89)90105-3
  54. Pozzi G., Paola N.D., Nielsen S.B., Holdsworth R.E., Bowen L., 2018. A new interpretation for the nature and significance of mirror-like surfaces in experimental carbonate-hosted seismic faults. Geology, 46, 583–586. https://doi.org/10.1130/G40197.1">https://doi.org/10.1130/G40197.1
  55. Ratschbacher L., Frisch W., Linzer H.G., 1991. Lateral extrusion in the Eastern Alps. Part 2: structural analysis. Tectonics, 10, 257–271. https://doi.org/10.1029/90TC02623">https://doi.org/10.1029/90TC02623
  56. Rempe M., Mitchell T., Renner J., Nippress S., Ben-Zion Y., Rockwell T., 2013. Damage and seismic velocity structure of pulverized rocks near the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 118/6, 2813–2831. https://doi.org/10.1002/jgrb.50184">https://doi.org/10.1002/jgrb.50184
  57. Rempe M., Smith S.A., Ferri F., Mitchell T.M., Toro G.D., 2014. Clast-cortex aggregates in experimental and natural calcite-bearing fault zones. Journal of Structural Geology, 68, 142–157. https://doi.org/10.1016/j.jsg.2014.09.007">https://doi.org/10.1016/j.jsg.2014.09.007
  58. Renard F., Gratier J.P., Jamtveit B., 2000. Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults. Journal of Structural Geology, 22, 1395–1407. https://doi.org/10.1016/S0191-8141(00)00064-X">https://doi.org/10.1016/S0191-8141(00)00064-X
  59. Renard F., Schmittbuhl J., Gratier J.P., Meakin P., Merino E., 2004. Three-dimensional roughness of stylolites in limestones. Journal of Geophysical Research, 109, 1–12. https://doi.org/10.1029/2003JB002555">https://doi.org/10.1029/2003JB002555
  60. Renner J., Rummel F., 1996. The effect of experimental and microstructural parameters on the transition from brittle failure to cataclastic flow of carbonate rocks. Tectonophysics, 258, 151–169. https://doi.org/10.1016/0040-1951(95)00192-1">https://doi.org/10.1016/0040-1951(95)00192-1
  61. Rowe C.D., Moore J.C., Meneghini F., McKeirnan A.W., 2005. Large-scale pseudotachylytes and fluidized cataclasites from an ancient subduction thrust fault. Geology, 33, 937–940. https://doi.org/10.1130/G21856.1">https://doi.org/10.1130/G21856.1
  62. Rowe C.D., Kirkpatrick J.D., Brodsky E.E., 2012. Fault rock injections record paleo-earthquakes. Earth and Planetary Science Letters, 335–336, 154–166. https://doi.org/10.1016/j.epsl.2012.04.015">https://doi.org/10.1016/j.epsl.2012.04.015
  63. Rutter E.H., 1976. A Discussion on natural strain and geological structure – The kinetics of rock deformation by pressure solution. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 283, 203–219 https://doi.org/10.1098/rsta.1976.0079">https://doi.org/10.1098/rsta.1976.0079
  64. Rutter E.H., 1983. Pressure solution in nature, theory and experiment. Journal of the Geological Society, 140, 725–740. https://doi.org/10.1144/gsjgs.140.5.0725">https://doi.org/10.1144/gsjgs.140.5.0725
  65. Rutter E., Hadizadeh J., 1991. On the influence of porosity on the low-temperature brittle-ductile transition in siliciclastic rocks. Journal of Structural Geology, 13, 609–614. https://doi.org/10.1016/0191-8141(91)90047-M">https://doi.org/10.1016/0191-8141(91)90047-M
  66. Sagy A., Korngreen D., 2012. Dynamic branched fractures in pulverized rocks from a deep borehole. Geology, 40/9, 799–802. https://doi.org/10.1130/G33194.1">https://doi.org/10.1130/G33194.1
  67. Sala P., Bella P., Szczygieł J., Wróblewski W., Gradziński M., 2022. Healed speleothems: A possible indicator of seismotectonic activity in karst areas. Sedimentary Geology, 430, 106105. https://doi.org/10.1016/j.sedgeo.2022.106105">https://doi.org/10.1016/j.sedgeo.2022.106105
  68. Sanders D., Ortner H., Pomella H., 2018. Stratigraphy and deformation of Pleistocene talus in relation to a normal fault zone (central Apennines, Italy). Sedimentary Geology, 373, 77–97. https://doi.org/10.1016/j.sedgeo.2018.05.013">https://doi.org/10.1016/j.sedgeo.2018.05.013
  69. Schmid S.M., Aebli H.R., Heller F., Zingg A., 1989. The role of the Periadriatic Line in the tectonic evolution of the Alps. Geological Society, London, Special Publications 1989, v.45; p153–171. https://doi.org/10.1144/gsl.sp.1989.045.01.08">https://doi.org/10.1144/gsl.sp.1989.045.01.08
  70. Schönlaub H.P., Schuster R., 2015. Die zweigeteilten Karawanken und ihre erdgeschichtliche Entwicklung. Naturwissenschaftlicher Verein für Kärnten, Klagenfurt am Wörthersee.
  71. Schröckenfuchs T., Bauer H., Grasemann B., Decker K., 2015. Rock pulverization and localization of a strike-slip fault zone in dolomite rocks (Salzach-Ennstal-Mariazell-Puchberg fault, Austria). Journal of Structural Geology, 78, 57–85. https://doi.org/10.1016/j.jsg.2015.06.009">https://doi.org/10.1016/j.jsg.2015.06.009
  72. Schuck B., Janssen C., Schleicher A., Toy V., Dresen G., 2018. Microstructures imply cataclasis and authigenic mineral formation control geomechanical properties of New Zealand’s Alpine Fault. Journal of Structural Geology, 110, 172–186. https://doi.org/10.1016/j.jsg.2018.03.001">https://doi.org/10.1016/j.jsg.2018.03.001
  73. Sibson R.H., 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, 133, 191–213. https://doi.org/10.1144/gsjgs.133.3.0191">https://doi.org/10.1144/gsjgs.133.3.0191
  74. Siman-Tov S., Aharonov E., Sagy A., Emmanuel S., 2013. Nanograins form carbonate fault mirrors. Geology, 41, 703–706. https://doi.org/10.1130/G34087.1">https://doi.org/10.1130/G34087.1
  75. Siman-Tov S., Aharonov E., Boneh Y., Reches Z., 2015. Fault mirrors along carbonate faults: Formation and destruction during shear experiments. Earth and Planetary Science Letters, 430, 367–376. https://doi.org/10.1016/j.epsl.2015.08.031">https://doi.org/10.1016/j.epsl.2015.08.031
  76. Smeraglia L., Bettucci A., Billi A., Carminati E., Cavallo A., Toro G.D., Natali M., Passeri D., Rossi M., Spagnuolo E., 2017. Microstructural evidence for seismic and aseismic slips along clay-bearing, carbonate faults. Journal of Geophysical Research: Solid Earth, 122, 3895–3915. https://doi.org/10.1002/2017JB014042">https://doi.org/10.1002/2017JB014042
  77. Smith S., Collettini C., Holdsworth R., 2008. Recognizing the seismic cycle along ancient faults: CO2-induced fluidization of breccias in the footwall of a sealing low-angle normal fault. Journal of Structural Geology, 30, 1034–1046. https://doi.org/10.1016/j.jsg.2008.04.010">https://doi.org/10.1016/j.jsg.2008.04.010
  78. Smith S.A.F., Billi A., Toro G.D., Spiess R., 2011. Principal slip zones in limestone: Microstructural characterization and implications for the seismic cycle (Tre Monti Fault, Central Apennines, Italy). Pure and Applied Geophysics, 168, 2365–2393. https://doi.org/10.1007/s00024-011-0267-5">https://doi.org/10.1007/s00024-011-0267-5
  79. Spötl C., Dublyansky Y., Koltai G., Racine T., Plan L., 2023. The Obir Caves adjacent to the Periadriatic Fault in southern Austria: Uplifted hypogene caves formed by carbonic acid speleogenesis. Geomorphology, Volume 441. https://doi.org/10.1016/j.geomorph.2023.108901">https://doi.org/10.1016/j.geomorph.2023.108901
  80. Sprenger W.L., 1996. Das Periadriatische Lineament südlich der Lienzer Dolomiten. Abhandlungen der Geologischen Bundesanstalt, Wien, 52, 1–220.
  81. Suess E., 1901. Das Antlitz der Erde: 3, 1. Hälfte. Tempsky Freytag.
  82. Sylvester A.G., 1988. Strike-slip faults. Geological Society of AmericaBulletin, 100, 1666–1703. https://doi.org/10.1130/0016-7606(1988)100<;1666:SSF>2.3.CO;2">https://doi.org/10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2
  83. Szczygieł J., Gradziński M., Bella P., Hercman H., Littva J., Mendecki M.J., Sala P., Wróblewski W., 2021. Quaternary faulting in the Western Carpathians: Insights into paleoseismology from cave deformations and damaged speleothems (Demänová Cave System, Low Tatra Mts). Tectonophysics 820/2021, 229111. https://doi.org/10.1016/j.tecto.2021.229111">https://doi.org/10.1016/j.tecto.2021.229111
  84. Tada R., Siever, R., 1989. Pressure solution during diagenesis. Annual Reviews of Earth and Planetary Sciences, 17., 89–118. https://doi.org/10.1146/annurev.ea.17.050189.000513">https://doi.org/10.1146/annurev.ea.17.050189.000513
  85. Tesei T., Carpenter B.M., Giorgetti C., Scuderi M.M., Sagy A., Scarlato P., Collettini C., 2017. Friction and scale-dependent deformation processes of large experimental carbonate faults. Journal of Structural Geology, 100, 12–23. https://doi.org/10.1016/j.jsg.2017.05.008">https://doi.org/10.1016/j.jsg.2017.05.008
  86. Thaler H., Solar E., Trimmel H., 1970. Höhlenplan der Wartburggrotte, Obir-Tropfsteinhöhlen. Archiv des Landesvereins für Höhlenkunde in Wien und Niederösterreich, Wien.
  87. Tollmann A., 1977. Die Geologie von Österreich: Die Zentralalpen, volume 1. Deuticke, Wien.
  88. Tschegg C., Hou Z., Rice A.H.N., Fendrych J., Matiasek E., Berger T., Grasemann B., 2020. Fault zone structures and strain localization in clinoptilolite-tuff (Nižný Hrabovec, Slovak Republic). Journal of Structural Geology, 138. https://doi.org/10.1016/j.jsg.2020.104090">https://doi.org/10.1016/j.jsg.2020.104090
  89. Ujiie K., Yamaguchi A., Kimura G., Toh, S., 2007. Fluidization of granular material in a subduction thrust at seismogenic depths. Earth and Planetary Science Letters, 259, 307–318. https://doi.org/10.1016/j.epsl.2007.04.049">https://doi.org/10.1016/j.epsl.2007.04.049
  90. Verberne B.A., de Bresser J.H., Niemeijer A.R., Spiers C.J., de Winter D.M., Plümper O., 2013. Nanocrystalline slip zones in calcite fault gouge show intense crystallographic preferred orientation: Crystal plasticity at sub-seismic slip rates at 18–150 °C. Geology, 41/8, 863–866. https://doi.org/10.1130/G34279.1">https://doi.org/10.1130/G34279.1
  91. Verberne B.A., Spiers C.J., Niemeijer A.R., Bresser J.H.P.D., Winter, D.A.M.D., Plümper O., 2014. Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure and Applied Geophysics, 171, 2617–2640. https://doi.org/10.1007/s00024-013-0760-0">https://doi.org/10.1007/s00024-013-0760-0
  92. Vignaroli G., Viola G., Diamanti R., Zuccari C., Garofalo P., Bonini S., Selli L., 2020. Multistage strain localisation and fluid-assisted cataclasis in carbonate rocks during the seismic cycle: Insights from the Belluno Thrust (eastern Southern Alps, Italy). Journal of Structural Geology, 141, 1–19. https://doi.org/10.1016/j.jsg.2020.104216">https://doi.org/10.1016/j.jsg.2020.104216
  93. Viti C., Brogi A., Liotta D., Mugnaioli E., Spiess R., Dini A., Zucchi M., Vannuccini G., 2016. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy). Journal of Structural Geology, 86, 1–12. https://doi.org/10.1016/j.jsg.2016.02.013">https://doi.org/10.1016/j.jsg.2016.02.013
  94. Vrabec M., Prešeren P.P., Stopar B., 2006. GPS study (1996–2002) of active deformation along the Periadriatic fault system in northeastern Slovenia: tectonic model. Geologica Carpathica, 57, 57–65.
  95. Wechsler N., Allen E.E., Rockwell T.K., Girty G., Chester J.S., Ben-Zion Y., 2011. Characterization of pulverized granitoids in a shallow core along the San Andreas Fault, Littlerock, CA. Geophysical Journal International, 186/2, 401–417. https://doi.org/10.1111/j.1365-246X.2011.05059.x">https://doi.org/10.1111/j.1365-246X.2011.05059.x
  96. Wilcox R., Hardingh T., Seely D.R., 1973. Basic wrench tectonics. American Association of Petroleum Geologists Bulletin, 57/1, 74–96. https://doi.org/10.1306/819A424A-16C5-11D7-8645000102C1865D">https://doi.org/10.1306/819A424A-16C5-11D7-8645000102C1865D
  97. Woodcock N.H., Schubert C., 1994. Continental strike-slip tectonics. In Hancock P. L., editor, Continental deformation, 251–263. Pergamon Press, Oxford, 1st edition.
  98. Woodcock N.H., Mort K., 2008. Classification of fault breccias and related fault rocks. Geological Magazine, 145, 435–440. https://doi.org/10.1017/S0016756808004883">https://doi.org/10.1017/S0016756808004883
  99. Zhang X., Spiers C.J., Peach C.J., 2010. Compaction creep of wet granular calcite by pressure solution at 28°C to 150°C. Journal of Geophysical Research, 115, 1–18. https://doi.org/10.1029/2008JB005853">https://doi.org/10.1029/2008JB005853
DOI: https://doi.org/10.17738/ajes.2025.0006 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 115 - 132
Submitted on: Nov 28, 2024
Accepted on: May 15, 2025
Published on: Jun 19, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Stefanie J. Koppensteiner, Harald Bauer, Bernhard Grasemann, Lukas Plan, Ivo Baroň, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.