Agosta F., Aydin A., 2006. Architecture and deformation mechanism of a basin-bounding normal fault in Mesozoic platform carbonates, central Italy. Journal of Structural Geology, 28/8, 1445–1467. https://doi.org/10.1016/j.jsg.2006.04.006">https://doi.org/10.1016/j.jsg.2006.04.006
Baqués V., Travé A., Labaume P., Benedicto A., Soliva R., 2011. Differences between pre-rift and syn-rift karsts in a major Neogene normal fault zone from petrological and geochemical analysis of their infillings. Documentos sobre el Terciario de Iberia a inicios del Siglo XXI, VII Congreso del Grupo Español del Terciario.
Baroň I., Plan L., Sokol L., Grasemann B., Melichar R., Mitrovic I., Stemberk J., 2019a. Present-day kinematic behaviour of active faults in the Eastern Alps. Tectonophysics, 752, 1–23. https://doi.org/10.1016/j.tecto.2018.12.024">https://doi.org/10.1016/j.tecto.2018.12.024
Baroň I., Sokol L., Melichar R., Plan L., 2019b. Gravitational and tectonic stress states within a deep-seated gravitational slope deformation near the seismogenic Periadriatic Line fault. Engineering Geology, 261. https://doi.org/10.1016/j.enggeo.2019.105284">https://doi.org/10.1016/j.enggeo.2019.105284
Baroň I., Plan L., Grasemann B., Melichar R., Mitrović-Woodell I., Rowberry M., Scholz D., 2022a: Three large prehistoric earthquakes in the Eastern Alps evidenced by cave rupture and speleothem damage. Geomorphology, Volume 408. https://doi.org/10.1016/j.geomorph.2022.108242">https://doi.org/10.1016/j.geomorph.2022.108242
Baroň I., Koktavý P., Trčka T., Rowberry M., Stemberk J., Balek J., Plan L., Melichar R., Diendorfer G., Macků, R., Škarvada, P., 2022b. Differentiating between artificial and natural sources of electromagnetic radiation at a seismogenic fault. Engineering Geology, 311, 106912. https://doi.org/10.1016/j.enggeo.2022.106912">https://doi.org/10.1016/j.enggeo.2022.106912
Billi A., 2003. Solution slip and separations on strike-slip fault zones: theory and application to the Mattinata Fault, Italy. Journal of Structural Geology, 25, 703–715. https://doi.org/10.1016/S0191-8141(02)00077-9">https://doi.org/10.1016/S0191-8141(02)00077-9
Billi A., Toro G.D., 2008. Fault-related carbonate rocks and earthquake indicators: recent advances and future trends. In Landowe, S. J. and Hammler, G. M., editors, Structural Geology: New Research, 63–86. Nova Science Publishers, Inc.
Billi A., 2010. Microtectonics of low-P low-T carbonate fault rocks. Journal of Structural Geology, 32, 1392–1402. https://doi.org/10.1016/j.jsg.2009.05.007">https://doi.org/10.1016/j.jsg.2009.05.007
Blenkinsop T.G., 1991. Cataclasis and processes of particle size reduction. Pure and Applied Geophysics PAGEOPH, 136, 59–86. https://doi.org/10.1007/BF00878888">https://doi.org/10.1007/BF00878888
Brodsky E.E., Rowe C.D., Meneghini F., Moore J.C., 2009. A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake. Journal of Geophysical Research: Solid Earth, 114. https://doi.org/10.1029/2008JB005633">https://doi.org/10.1029/2008JB005633
Brune J.N., 2001. Fault-normal dynamic unloading and loading: An explanation for “Non-Gouge” rock powder and lack of fault-parallel shear bands along the San Andreas Fault. AGU, Fall Meeting Supplement, 82/47, F854.
Demurtas M., Fondriest M., Balsamo F., Clemenzi L., Storti F., Bistacchi A., Toro G.D., 2016. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy). Journal of Structural Geology, 90, 185–206. https://doi.org/10.1016/j.jsg.2016.08.004">https://doi.org/10.1016/j.jsg.2016.08.004
Dor O., Ben-Zion Y., Rockwell T.K., Brune J., 2006. Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth and Planetary Science Letters, 245/3–4, 642–654. https://doi.org/10.1016/j.epsl.2006.03.034">https://doi.org/10.1016/j.epsl.2006.03.034
Fodor L., Jelen B., Márton E., Skaberne D., Čar J., Vrabec M., 1998. Miocene- Pliocene tectonic evolution of the Slovenian Periadriatic fault: Implications for Alpine-Carpathian extrusion models. Tectonics, 17, 690–709. https://doi.org/10.1029/98tc01605">https://doi.org/10.1029/98tc01605
Fondriest M., Smith S.A., Toro G.D., Zampieri D., Mittempergher S., 2012. Fault zone structure and seismic slip localization in dolostones, an example from the Southern Alps, Italy. Journal of Structural Geology, 45, 52–67. https://doi.org/10.1016/j.jsg.2012.06.014">https://doi.org/10.1016/j.jsg.2012.06.014
Fondriest, M., Smith, S. A. F., Candela, T., Nielsen, S. B., Mair, K., and Toro, G. D., 2013. Mirror-like faults and power dissipation during earthquakes. Geology, 41, 1175–1178. https://doi.org/10.1130/G34641.1">https://doi.org/10.1130/G34641.1
Fondriest M., Aretusini S., Toro G.D., Smith S.A., 2015. Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy). Tectonophysics, 654, 56–74. https://doi.org/10.1016/j.tecto.2015.04.015">https://doi.org/10.1016/j.tecto.2015.04.015
Frisch W., Kuhlemann J., Dunkl I., Brügel A., 1998. Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics, 297. https://doi.org/10.1016/S0040-1951(98)00160-7">https://doi.org/10.1016/S0040-1951(98)00160-7
Froitzheim N., Plasienka D., Schuster R., 2008. Alpine tectonics of the Alps and Western Carpathians. In The geology of Central Europe Volume 2: Mesozoic and Cenozoic, volume 2. The Geological Society of London, London. https://doi.org/10.1144/CEV2P.6">https://doi.org/10.1144/CEV2P.6
Gratier J.P., Favreau P., Renard F., 2003. Modeling fluid transfer along California faults when integrating pressure solution crack sealing and compaction processes. Journal of Geophysical Research: Solid Earth, 108. https://doi.org/10.1029/2001JB000380">https://doi.org/10.1029/2001JB000380
Gratier J.P., Gueydan F., 2007. Deformation in the presence of fluids and mineral reactions: Effect of fracturing and fluid-rock interaction on seismic cycles. In Handy, M.R., Hirth G., Hovius N., editors, Tectonic faults: Agents of change on a dynamic Earth, 319–356. The MIT Press, Cambridge.
Han R., Hirose T., 2012. Clay-clast aggregates in fault gouge: An unequivocal indicator of seismic faulting at shallow depths? Journal of Structural Geology, 43, 92–99. https://doi.org/10.1016/j.jsg.2012.07.008">https://doi.org/10.1016/j.jsg.2012.07.008
Kenkmann T., 2003. Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah. Earth and Planetary Science Letters, 214, 43–58. https://doi.org/10.1016/S0012-821X(03)00359-5">https://doi.org/10.1016/S0012-821X(03)00359-5
Koppensteiner S.J., 2021. Polished slickensides preserved in the Obir Caves (Austria) close to the Periadriatic Fault System. Master’s Thesis, University of Vienna, Austria, 221 pp. https://phaidra.univie.ac.at/download/o:1399461
Kuo L.-W., Song S.-R., Suppe J., Yeh E.-C., 2016. Fault mirrors in seismically active fault zones: A fossil of small earthquakes at shallow depths. Geophysical Research Letters, 43, 1950–1959. https://doi.org/10.1002/2015GL066882">https://doi.org/10.1002/2015GL066882
La Valle F., 2019. Factors controlling the thickness of fault damage zones in carbonates (Central Apennines, Italy). Master’s thesis, Università degli studi di Padova, Padova.
Laubscher H.P., 1973. Alpen und Plattentektonik. Das Problem der Bewegungsdiffusion an kompressiven Plattengrenzen. Zeitschrift der Deutschen Geologischen Gesellschaft, 124. https://doi.org/10.1127/zdgg/124/1973/295">https://doi.org/10.1127/zdgg/124/1973/295
Lin A., 2001. S-C fabrics developed in cataclastic rocks from the Nojima fault zone, Japan and their implications for tectonic history. Journal of Structural Geology, 23, 1167–1178. https://doi.org/10.1016/S0191-8141(00)00171-1">https://doi.org/10.1016/S0191-8141(00)00171-1
Lin A., 2011. Seismic slip recorded by fluidized ultracataclastic veins formed in a coseismic shear zone during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 39, 547–550. https://doi.org/10.1130/G32065.1">https://doi.org/10.1130/G32065.1
Mancktelow N.S., Stöckli D.F., Grollimund B., Müller W., Fügenschuh B., Viola G., Seward D., Villa I.M., 2001. The DAV and Periadriatic fault systems in the Eastern Alps south of the Tauern window. International Journal of Earth Sciences, 90. https://doi.org/10.1007/s005310000190">https://doi.org/10.1007/s005310000190
Márton E., Trajanova M., Zupančič N., Jelen B., 2006. Formation, uplift and tectonic integration of a Periadriatic intrusive complex (Pohorje, Slovenia) as reflected in magnetic parameters and palaeomagnetic directions. Geophysical Journal International, 167. https://doi.org/10.1111/j.1365-246X.2006.03098.x">https://doi.org/10.1111/j.1365-246X.2006.03098.x
Mitrović-Woodell I., Tesei T., Plan L., Habler G., Baroň I., Grasemann B., 2023. Deformation of columnar calcite within flowstone speleothem. Journal of Structural Geology, 174, 104924. https://doi.org/10.1016/j.jsg.2023.104924">https://doi.org/10.1016/j.jsg.2023.104924
Müller W., Prosser G., Mancktelow N.S., Villa I.M., Kelley S.P., Viola G., Oberli F., 2001. Geochronological constraints on the evolution of the Periadriatic Fault System (Alps). International Journal of Earth Sciences, 90. https://doi.org/10.1007/s005310000187">https://doi.org/10.1007/s005310000187
Nenna F., Aydin A., 2011. The formation and growth of pressure solution seams in clastic rocks: A field and analytical study. Journal of Structural Geology, 33, 633–643. https://doi.org/10.1016/j.jsg.2011.01.014">https://doi.org/10.1016/j.jsg.2011.01.014
Ohl M., Plümper O., Chatzaras V., Wallis D., Vollmer C., Drury M., 2020. Mechanisms of fault mirror formation and fault healing in carbonate rocks. Earth and Planetary Science Letters, 530. https://doi.org/10.1016/j.epsl.2019.115886">https://doi.org/10.1016/j.epsl.2019.115886
Otsuki K., Monzawa N., Nagase T., 2003. Fluidization and melting of fault gouge during seismic slip: Identification in the Nojima fault zone and implications for focal earthquake mechanisms. Journal of Geophysical Research: Solid Earth, 108. https://doi.org/10.1029/2001JB001711">https://doi.org/10.1029/2001JB001711
Payne, R. M., and Duan, B., 2016. Insights into pulverized rock formation from dynamic rupture models of earthquakes. Geophysical Journal International, 208, 715–723. https://doi.org/10.1093/gji/ggw436">https://doi.org/10.1093/gji/ggw436
Piane C., Clennell M.B., Keller J.V., Giwelli A., Luzin V., 2017. Carbonate hosted fault rocks: A review of structural and microstructural characteristic with implications for seismicity in the upper crust. Journal of Structural Geology, 103, 17–36. https://doi.org/10.1016/j.jsg.2017.09.003">https://doi.org/10.1016/j.jsg.2017.09.003
Power W. L., Tullis T.E., 1989. The relationship between slickenside surfaces in fine-grained quartz and the seismic cycle. Journal of Structural Geology, 11, 879–893. https://doi.org/10.1016/0191-8141(89)90105-3">https://doi.org/10.1016/0191-8141(89)90105-3
Pozzi G., Paola N.D., Nielsen S.B., Holdsworth R.E., Bowen L., 2018. A new interpretation for the nature and significance of mirror-like surfaces in experimental carbonate-hosted seismic faults. Geology, 46, 583–586. https://doi.org/10.1130/G40197.1">https://doi.org/10.1130/G40197.1
Rempe M., Mitchell T., Renner J., Nippress S., Ben-Zion Y., Rockwell T., 2013. Damage and seismic velocity structure of pulverized rocks near the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 118/6, 2813–2831. https://doi.org/10.1002/jgrb.50184">https://doi.org/10.1002/jgrb.50184
Renard F., Gratier J.P., Jamtveit B., 2000. Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults. Journal of Structural Geology, 22, 1395–1407. https://doi.org/10.1016/S0191-8141(00)00064-X">https://doi.org/10.1016/S0191-8141(00)00064-X
Renner J., Rummel F., 1996. The effect of experimental and microstructural parameters on the transition from brittle failure to cataclastic flow of carbonate rocks. Tectonophysics, 258, 151–169. https://doi.org/10.1016/0040-1951(95)00192-1">https://doi.org/10.1016/0040-1951(95)00192-1
Rowe C.D., Moore J.C., Meneghini F., McKeirnan A.W., 2005. Large-scale pseudotachylytes and fluidized cataclasites from an ancient subduction thrust fault. Geology, 33, 937–940. https://doi.org/10.1130/G21856.1">https://doi.org/10.1130/G21856.1
Rutter E.H., 1976. A Discussion on natural strain and geological structure – The kinetics of rock deformation by pressure solution. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 283, 203–219 https://doi.org/10.1098/rsta.1976.0079">https://doi.org/10.1098/rsta.1976.0079
Rutter E.H., 1983. Pressure solution in nature, theory and experiment. Journal of the Geological Society, 140, 725–740. https://doi.org/10.1144/gsjgs.140.5.0725">https://doi.org/10.1144/gsjgs.140.5.0725
Rutter E., Hadizadeh J., 1991. On the influence of porosity on the low-temperature brittle-ductile transition in siliciclastic rocks. Journal of Structural Geology, 13, 609–614. https://doi.org/10.1016/0191-8141(91)90047-M">https://doi.org/10.1016/0191-8141(91)90047-M
Sagy A., Korngreen D., 2012. Dynamic branched fractures in pulverized rocks from a deep borehole. Geology, 40/9, 799–802. https://doi.org/10.1130/G33194.1">https://doi.org/10.1130/G33194.1
Sala P., Bella P., Szczygieł J., Wróblewski W., Gradziński M., 2022. Healed speleothems: A possible indicator of seismotectonic activity in karst areas. Sedimentary Geology, 430, 106105. https://doi.org/10.1016/j.sedgeo.2022.106105">https://doi.org/10.1016/j.sedgeo.2022.106105
Sanders D., Ortner H., Pomella H., 2018. Stratigraphy and deformation of Pleistocene talus in relation to a normal fault zone (central Apennines, Italy). Sedimentary Geology, 373, 77–97. https://doi.org/10.1016/j.sedgeo.2018.05.013">https://doi.org/10.1016/j.sedgeo.2018.05.013
Schmid S.M., Aebli H.R., Heller F., Zingg A., 1989. The role of the Periadriatic Line in the tectonic evolution of the Alps. Geological Society, London, Special Publications 1989, v.45; p153–171. https://doi.org/10.1144/gsl.sp.1989.045.01.08">https://doi.org/10.1144/gsl.sp.1989.045.01.08
Schönlaub H.P., Schuster R., 2015. Die zweigeteilten Karawanken und ihre erdgeschichtliche Entwicklung. Naturwissenschaftlicher Verein für Kärnten, Klagenfurt am Wörthersee.
Schröckenfuchs T., Bauer H., Grasemann B., Decker K., 2015. Rock pulverization and localization of a strike-slip fault zone in dolomite rocks (Salzach-Ennstal-Mariazell-Puchberg fault, Austria). Journal of Structural Geology, 78, 57–85. https://doi.org/10.1016/j.jsg.2015.06.009">https://doi.org/10.1016/j.jsg.2015.06.009
Schuck B., Janssen C., Schleicher A., Toy V., Dresen G., 2018. Microstructures imply cataclasis and authigenic mineral formation control geomechanical properties of New Zealand’s Alpine Fault. Journal of Structural Geology, 110, 172–186. https://doi.org/10.1016/j.jsg.2018.03.001">https://doi.org/10.1016/j.jsg.2018.03.001
Smeraglia L., Bettucci A., Billi A., Carminati E., Cavallo A., Toro G.D., Natali M., Passeri D., Rossi M., Spagnuolo E., 2017. Microstructural evidence for seismic and aseismic slips along clay-bearing, carbonate faults. Journal of Geophysical Research: Solid Earth, 122, 3895–3915. https://doi.org/10.1002/2017JB014042">https://doi.org/10.1002/2017JB014042
Smith S., Collettini C., Holdsworth R., 2008. Recognizing the seismic cycle along ancient faults: CO2-induced fluidization of breccias in the footwall of a sealing low-angle normal fault. Journal of Structural Geology, 30, 1034–1046. https://doi.org/10.1016/j.jsg.2008.04.010">https://doi.org/10.1016/j.jsg.2008.04.010
Smith S.A.F., Billi A., Toro G.D., Spiess R., 2011. Principal slip zones in limestone: Microstructural characterization and implications for the seismic cycle (Tre Monti Fault, Central Apennines, Italy). Pure and Applied Geophysics, 168, 2365–2393. https://doi.org/10.1007/s00024-011-0267-5">https://doi.org/10.1007/s00024-011-0267-5
Spötl C., Dublyansky Y., Koltai G., Racine T., Plan L., 2023. The Obir Caves adjacent to the Periadriatic Fault in southern Austria: Uplifted hypogene caves formed by carbonic acid speleogenesis. Geomorphology, Volume 441. https://doi.org/10.1016/j.geomorph.2023.108901">https://doi.org/10.1016/j.geomorph.2023.108901
Szczygieł J., Gradziński M., Bella P., Hercman H., Littva J., Mendecki M.J., Sala P., Wróblewski W., 2021. Quaternary faulting in the Western Carpathians: Insights into paleoseismology from cave deformations and damaged speleothems (Demänová Cave System, Low Tatra Mts). Tectonophysics 820/2021, 229111. https://doi.org/10.1016/j.tecto.2021.229111">https://doi.org/10.1016/j.tecto.2021.229111
Tada R., Siever, R., 1989. Pressure solution during diagenesis. Annual Reviews of Earth and Planetary Sciences, 17., 89–118. https://doi.org/10.1146/annurev.ea.17.050189.000513">https://doi.org/10.1146/annurev.ea.17.050189.000513
Thaler H., Solar E., Trimmel H., 1970. Höhlenplan der Wartburggrotte, Obir-Tropfsteinhöhlen. Archiv des Landesvereins für Höhlenkunde in Wien und Niederösterreich, Wien.
Ujiie K., Yamaguchi A., Kimura G., Toh, S., 2007. Fluidization of granular material in a subduction thrust at seismogenic depths. Earth and Planetary Science Letters, 259, 307–318. https://doi.org/10.1016/j.epsl.2007.04.049">https://doi.org/10.1016/j.epsl.2007.04.049
Verberne B.A., de Bresser J.H., Niemeijer A.R., Spiers C.J., de Winter D.M., Plümper O., 2013. Nanocrystalline slip zones in calcite fault gouge show intense crystallographic preferred orientation: Crystal plasticity at sub-seismic slip rates at 18–150 °C. Geology, 41/8, 863–866. https://doi.org/10.1130/G34279.1">https://doi.org/10.1130/G34279.1
Viti C., Brogi A., Liotta D., Mugnaioli E., Spiess R., Dini A., Zucchi M., Vannuccini G., 2016. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy). Journal of Structural Geology, 86, 1–12. https://doi.org/10.1016/j.jsg.2016.02.013">https://doi.org/10.1016/j.jsg.2016.02.013
Vrabec M., Prešeren P.P., Stopar B., 2006. GPS study (1996–2002) of active deformation along the Periadriatic fault system in northeastern Slovenia: tectonic model. Geologica Carpathica, 57, 57–65.
Wechsler N., Allen E.E., Rockwell T.K., Girty G., Chester J.S., Ben-Zion Y., 2011. Characterization of pulverized granitoids in a shallow core along the San Andreas Fault, Littlerock, CA. Geophysical Journal International, 186/2, 401–417. https://doi.org/10.1111/j.1365-246X.2011.05059.x">https://doi.org/10.1111/j.1365-246X.2011.05059.x
Wilcox R., Hardingh T., Seely D.R., 1973. Basic wrench tectonics. American Association of Petroleum Geologists Bulletin, 57/1, 74–96. https://doi.org/10.1306/819A424A-16C5-11D7-8645000102C1865D">https://doi.org/10.1306/819A424A-16C5-11D7-8645000102C1865D
Woodcock N.H., Mort K., 2008. Classification of fault breccias and related fault rocks. Geological Magazine, 145, 435–440. https://doi.org/10.1017/S0016756808004883">https://doi.org/10.1017/S0016756808004883