Have a personal or library account? Click to login
Zircon ages and differentiation trend of Ordovician granitoids from the southeastern Ötztal Nappe (Texelgruppe, South Tyrol, Italy): ridge subduction at the margin of Gondwana? Cover

Zircon ages and differentiation trend of Ordovician granitoids from the southeastern Ötztal Nappe (Texelgruppe, South Tyrol, Italy): ridge subduction at the margin of Gondwana?

Open Access
|Mar 2025

References

  1. Autonomous Province Bolzano - South Tyrol, 2024. GeoBrowser. https://maps.civis.bz.it.
  2. Agrawal S., 1995. Discrimination between late-orogenic, post-orogenic, and anorogenic granites by major element compositions. The Journal of Geology, 103/5, 529–537. https://doi.org/10.1086/629774">https://doi.org/10.1086/629774
  3. Avanzini M., Bargossi G., Borsato A., Castiglioni G., Cucato M., Morelli C., Prosser G., Sapelza A., 2007. Erläuterungen zur Geologischen Karte von Italien im Maßstab 1: 50 000 Blatt 026 von Eppan. Servizio Geologico d’Italia.
  4. Bargossi G.M., Bove G., Cucato M., Gregnanini A., Morelli C., Moretti A., Poli S., Zanchetta S., Zanchi A., 2010. Erläuterungen zur geologischen Karte von Italien im Maßstab 1: 50 000 Blatt 013 Meran. CARG. ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale. Roma.
  5. Barker F., Farmer G.L., Ayuso R.A., Plafker G., Lull J.S., 1992. The 50 Ma granodiorite of the Eastern Gulf of Alaska: melting in an accretion-ary prism in the forearc. Journal of Geophysical Research, 97(B5), 6757–6778. https://doi.org/10.1029/92JB00257">https://doi.org/10.1029/92JB00257
  6. Bernhard F., Klötzli U.S., Thöni M., Hoinkes G., 1996. Age, origin and geodynamic significance of a polymetamorphic felsic intrusion in the Ötztal Crystalline Basement, Tirol, Austria. Mineralogy and Petrology, 58/3–4, 171–196. https://doi.org/10.1007/BF01172095">https://doi.org/10.1007/BF01172095
  7. Brandner R., 1980. Geologische Übersichtskarte von Tirol (1:300 000) & Tektonik (1:600 000). In Amt der Tiroler Landesregierung (ed.): Tirol Atlas. Universitäts Verlag Wagner, Innsbruck.
  8. Brocher T.M., Fuis G.S., Fisher M.A., Plafker G., Moses M.J., Taber J.J., Christensen N.I., 1994. Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic data. Journal of Geophysical Research: Solid Earth, 99/B6, 11663–11685. https://doi.org/10.1029/94JB00111">https://doi.org/10.1029/94JB00111
  9. Burkett E.R., Billen M.I., 2009. Dynamics and implications of slab detachment due to ridge-trench collision. Journal of Geophysical Research: Solid Earth, 114/B12. https://doi.org/10.1029/2009JB006402">https://doi.org/10.1029/2009JB006402
  10. Cawood P.A., Hawkesworth C.J., Dhuime B., 2012. Detrital zircon record and tectonic setting. Geology, 40/10, 875–878. https://doi.org/10.1130/G32945.1">https://doi.org/10.1130/G32945.1
  11. Chappell B.W., White A.J.R., 1992. I-and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83/1–2, 1–26. https://doi.org/10.1017/S0263593300007720">https://doi.org/10.1017/S0263593300007720
  12. Chappell B.W., White A.J., 2001. Two contrasting granite types: 25 years later. Australian journal of earth sciences, 48/4, 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x">https://doi.org/10.1046/j.1440-0952.2001.00882.x
  13. Chew D.M., Petrus J.A., Kamber B.S., 2014. U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006">https://doi.org/10.1016/j.chemgeo.2013.11.006
  14. Corfu F., Hanchar J.M., Hoskin P.W.O., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53/1, 469–500. https://doi.org/10.2113/0530469">https://doi.org/10.2113/0530469
  15. Debon F., Le Fort P., 1988. A cationic classification of common plu-tonic rocks and their magmatic associations: principles, method, applications. Bulletin de Minéralogie, 111/5, 493–510. https://doi.org/10.3406/bulmi.1988.8096">https://doi.org/10.3406/bulmi.1988.8096
  16. Finger F., Riegler G., 2023. The role of the proto-Alpine Cenerian Orogen in the Avalonian-Cadomian belt. Austrian Journal of Earth Sciences, 116/71, 109–115. https://doi.org/10.17738/ajes.2023.0005">https://doi.org/10.17738/ajes.2023.0005
  17. Frisch W., Neubauer F., 1989. Pre-Alpine terranes and tectonic zoning in the eastern Alps. Geological Society of America, 230, 91–100. https://doi.org/10.1130/SPE230-p91">https://doi.org/10.1130/SPE230-p91
  18. Froitzheim N., Conti P.T., Van Daalen M., 1997. Late Cretaceous, synorogenic, low-angle normal faulting along the Schlinig fault (Switzerland, Italy, Austria) and its significance for the tectonics of the Eastern Alps. Tectonophysics, 280/3–4, 267–293. https://doi.org/10.1016/S0040-1951(97)00037-1">https://doi.org/10.1016/S0040-1951(97)00037-1
  19. GeoSphere Austria, 2024. Multithematische geologische Karte von Österreich 1:1 000 000. online: https://www.geologie.ac.at/services/webapplikationen/multithematische-geologische-karte.
  20. Geo-Sphere Austria - Bundesanstalt für Geologie, Geophysik, Klimatologie und Meteorologie, Wien.
  21. Gregnanin A., Sassi F.P., 1969. Magmatismo, feldspatizzazione e metamorfismo nel complesso gneissico-migmatico di Parcines (Alto Adige). Museo Tridentino di scienze naturali, 18, 57–131.
  22. Habler G., Thöni M., Solva H., 2006. Tracing the high-pressure stage in the polymetamorphic Texel Complex Austroalpine basement unit, Eastern Alps P-T-t-d constraints. Mineralogy and Petrology, 88, 269–296. https://doi.org/10.1007/s00710-006-0143-7">https://doi.org/10.1007/s00710-006-0143-7
  23. Habler G., Thöni M., Grasemann B., 2009. Cretaceous metamorphism in the Austroalpine Matsch Unit (Eastern Alps): the interrelation between deformation and chemical equilibration processes. Mineralogy and Petrology, 97, 149–171. https://doi.org/10.1007/s00710-009-0094-x">https://doi.org/10.1007/s00710-009-0094-x
  24. Hauser C., 1992. Geologische Karte der Republik Österreich 1: 50 000 – 117 Zirl. Geologische Bundesanstalt, Wien.
  25. Hammer W., 1911. Die Schichtfolge und der Bau des Jaggl im oberen Vintschgau. Jahrbuch der Kaiserlich Königlichen Geologischen Reichsanstalt. Wien, 61, 1–40.
  26. Hammer, W., 1926. Note illustrative della carta geologica delle Tre Venezie: foglio Passo di Resia. Società cooperativa tipografica. Hammer, W., 1923. Geologische Spezialkarte der Republik Österreich – Nauders - Maßstab 1:75 000. Geologische Bundesanstalt, Wien.
  27. Hammer, W., 1929. Geologische Spezialkarte der Republik Österreich – Ötzthal – Maßstab 1:75 000. Geologische Bundesanstalt, Wien.
  28. Hoinkes G., Thöni M., 1993. Evolution of the Ötztal-Stubai, Scarl-Campo and Ulten basement units. In: Raumer J.F., Neubauer F. (eds.), Pre-Mesozoic geology in the Alps. Springer Berlin Heidelberg, 485–494. https://doi.org/10.1007/978-3-642-84640-3_29">https://doi.org/10.1007/978-3-642-84640-3_29
  29. Institut für Geologie, Universität Bern and Bundesamt für Wasser und Geologie, 2005. Geologische Karte der Schweiz, 1: 50 000. Institut für Geologie, Universität Bern & Bundesamt für Wasser und Geologie, Switzerland.
  30. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale, Dipartimento per il servicio geologico d’Italia (1925) Carta Geologica delle Tre Venezie. In: Foglio 2–3 Passo di Resiá. Carta Geologica d’I-talia Scala 1:100 000. ISPRA, Roma.
  31. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale, Dipartimento per il servicio geologico d’Italia (1951) Carta Geologica delle Tre Venezie. In: Foglio 9 Monte Cevedale. Carta Geologica d’Italia Scala 1:100 000. ISPRA, Roma.
  32. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale, Dipartimento per il servicio geologico d’Italia (1957) Carta Geologica delle Tre Venezie. In: Foglio 10 Bolzano. Carta Geologica d’Italia Scala 1:100 000. ISPRA, Roma.
  33. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale, Dipartimento per il servicio geologico d’Italia (1970) Carta Geologica d’Italia Scala. Foglio 4 Meran. In: Carta Geologica d’Italia Scala 1:100000. ISPRA, Roma.
  34. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale, Dipartimento per il servicio geologico d’Italia (2010) Carta Geologica d’Italia Scala. Foglio 13 Meran. In: Carta Geologica d’Italia Scala 1:50000. ISPRA, Roma. https://doi.org/10.15161/oar.it/211569">https://doi.org/10.15161/oar.it/211569
  35. ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale, Dipartimento per il servicio geologico d’Italia (2023) Carta Geologica d’Italia Scala. Foglio 6 San Leonardo in Passiria. In: Carta Geologica d’Italia Scala 1:50 000. ISPRA, Roma. https://doi.org/10.15161/oar.it/211561">https://doi.org/10.15161/oar.it/211561
  36. Janák M., Froitzheim N., Lupták B., Vrabec M., Ravna E.J.K., 2004. First evidence for ultrahigh-pressure metamorphism of eclogites in Pohorje, Slovenia: Tracing deep continental subduction in the Eastern Alps. Tectonics, 23/5, 1–10. https://doi.org/10.1029/2004TC001641">https://doi.org/10.1029/2004TC001641
  37. Johannsen A., 1931. A Descriptive Petrography of the Igneous Rocks, Volume I. (88–92). University of Chicago Press, Chicago.
  38. Klötzli E., Teper E., Hörfarter C., 2008. Upper Ordovician basic magmatism in the Austroalpine Realm. Journal of Alpine Geology, 49, 1–127.
  39. Klötzli-Chowanetz E., Klötzli U., Koller F., 1997. Lower Ordovician migmatisation in the Ötztal crystalline basement (Eastern Alps, Austria): linking U-Pb and Pb-Pb dating with zircon morphology. Schweizerische mineralogische und petrographische Mitteilungen, 77, 315–324.
  40. Klug L., 2016. Deformation und Metamorphose im Saltauser Tal (Texelgruppe, Südtirol), Teil 1. University of Bonn, Master thesis.
  41. Klug L., Froitzheim N., 2021. Reuniting the Ötztal Nappe: the tectonic evolution of the Schneeberg Complex. International Journal of Earth Sciences, 1–18. https://doi.org/10.1007/s00531-021-02127-4">https://doi.org/10.1007/s00531-021-02127-4
  42. Konzett J., Miller C., Armstrong R., Thöni M., 2005. Metamorphic Evolution of Iron-rich Mafic Cumulates from the Ötztal–Stubai Crystalline Complex, Eastern Alps, Austria. Journal of Petrology, 46/4, 717–747. https://doi.org/10.1093/petrology/egh095">https://doi.org/10.1093/petrology/egh095
  43. Kreuss O., 2011. Geologische Karte Geofast Blatt 145 – Imst. Geologische Bundesanstalt, Wien.
  44. Kreuss O., 2012. Geologische Karte Geofast Blatt 173 – Sölden. Geologische Bundesanstalt, Wien.
  45. Ludwig K. R., 2012. Isoplot 3.75. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publications, 5, 1–75.
  46. Ludwig K.R., Mundil R., 2002. Extracting reliable U-Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. Geochimica et Cosmochimica Acta, 66(Supplement 1), 463.
  47. Maniar P.D., Piccoli M.P., 1989. Tectonic discrimination of granitoids. Geological Society of American Bulletin, 101, 635–643. https://doi.org/10.1130/0016-7606(1989)101%3C0635:TDOG%3E2.3.CO;2">https://doi.org/10.1130/0016-7606(1989)101%3C0635:TDOG%3E2.3.CO;2
  48. Meinhold G., Morton A.C., Fanning C.M., Howard J.P., Phillips R.J., Strogen D., Whitham A.G., 2014. Insights into crust formation and recycling in North Africa from combined U-Pb, Lu-Hf and O isotope data of detrital zircons from Devonian sandstone of southern Libya. Geological Society, London, Special Publications, 386/1, 281–292. https://doi.org/10.1144/SP386.1">https://doi.org/10.1144/SP386.1
  49. Miladinova I., Froitzheim N., Nagel T.J., Janak M., Fonseca R.O., Sprung P., Münker C., 2022. Constraining the process of intracontinental subduction in the Austroalpine Nappes: Implications from petrology and Lu-Hf geochronology of eclogites. Journal of Metamorphic Geology, 40/3, 423–456. https://doi.org/10.1111/jmg.12634">https://doi.org/10.1111/jmg.12634
  50. Miller C., Thöni M., 1995. Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria): geochemistry and Sm-Nd vs. Rb-Sr isotope systematics. Chemical Geology, 122/1–4, 199–225. https://doi.org/10.1016/0009-2541(95)00033-I">https://doi.org/10.1016/0009-2541(95)00033-I
  51. Mogessie A., Purtscheller F., Tessadri R., 1985. Geochemistry of amphibolites from the Ötztal-Stubai Complex (Northern Tyrol, Austria). Chemical Geology, 51. 103–113. https://doi.org/10.1016/0009-2541(85)90090-7">https://doi.org/10.1016/0009-2541(85)90090-7
  52. Montemagni C., Zanchetta S., Rocca M., Villa I.M., Morelli C., Mair V., Zanchi A., 2023. Kinematics and time-resolved evolution of the main thrust-sense shear zone in the Eo-Alpine orogenic wedge (the Vinschgau Shear Zone, eastern Alps). Solid Earth, 14/5, 551–570. https://doi.org/10.5194/se-14-551-2023">https://doi.org/10.5194/se-14-551-2023
  53. Moser M., 2016a. Geologische Karte Geofast Blatt 116 - Telfs. Geologische Bundesanstalt, Wien.
  54. Moser M., 2016b. Geologische Karte Geofast Blatt 172 - Weißkugel. Geologische Bundesanstalt, Wien.
  55. Müller W., Prosser G., Mancktelow N.S., Villa I.M., Kelley S.P., Viola G., Oberli F., 2001. Geochronological constraints on the evolution of the Periadriatic Fault System (Alps). International Journal of Earth Sciences, 90, 623–653. https://doi.org/10.1007/s005310000187">https://doi.org/10.1007/s005310000187
  56. Neubauer F., Liu Y., Dong Y., Chang R., Genser J., Yuan S., 2022. Pre-Alpine tectonic evolution of the Eastern Alps: from prototethys to paleotethys. Earth-Science Reviews, 226, 103923. https://doi.org/10.1016/j.earscirev.2022.103923">https://doi.org/10.1016/j.earscirev.2022.103923
  57. Nievoll J., Fritz H., Gallhofer D., Hauzenberger C., Pfatschbacher M., Gritsch B., 2022. From shallow into deep sea: Sedimentary facies and U-Pb zircon ages in the early Paleozoic Noric Group at Veitsch (Eastern Greywacke Zone, Austria). Austrian Journal of Earth Sciences, 115/1, 41–73. https://doi.org/10.17738/ajes.2022.0003">https://doi.org/10.17738/ajes.2022.0003
  58. Nilius N. P., Froitzheim N., Nagel T.J., Tomaschek F., Heuser A., 2016. The Schwarzhorn Amphibolite (Eastern Rätikon, Austria): an Early Cambrian intrusion in the Lower Austroalpine basement. Geologica Carpathica, 67/2, 121–132. https://doi.org/10.1515/geoca-2016-0008">https://doi.org/10.1515/geoca-2016-0008
  59. Oriolo S., Schulz B., Geuna S., González P.D., Otamendi J.E., Sláma J., Druguet E., Siegesmund S., 2021. Early Paleozoic accretionary orogens along the Western Gondwana margin. Geoscience Frontiers, 12/1, 109–130. https://doi.org/10.1016/j.gsf.2020.07.001">https://doi.org/10.1016/j.gsf.2020.07.001
  60. Paton C., Hellstrom J., Paul B., Woodhead J., Hergt J., 2011. Iolite: Free-ware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26/12, 2508–2518. https://doi.org/10.1039/C1JA10172B">https://doi.org/10.1039/C1JA10172B
  61. Pavlik W., Moser M., 2018. Geologische Karte Geofast Blatt 171 - Nauders. Geologische Bundesanstalt, Wien.
  62. Pearce J.A., Harris N.B., Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, 25/4, 956–983. https://doi.org/10.1093/petrology/25.4.956">https://doi.org/10.1093/petrology/25.4.956
  63. Petrus J.A., Kamber B.S., 2012. VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36/3, 247–270. https://doi.org/10.1111/j.1751-908X.2012.00158.x">https://doi.org/10.1111/j.1751-908X.2012.00158.x
  64. Plafker G., Moore J. C. Winkler G.R., 1994. Geology of the southern Alaska margin. In: Plafker G., Berg H. (eds.), The Geology of North Amerika, Vol. G-1: The geology of Alaska. Geological Society of Amerika, Boulder, Colorado, 389–449. https://doi.org/10.1130/DNAG-GNAG1.389">https://doi.org/10.1130/DNAG-GNAG1.389
  65. Pohl F., Froitzheim N., Obermüller G., Tomaschek F., Schröder O., Nagel T.J., Sciunnach D., Heuser A., 2018. Kinematics and age of synintrusive detachment faulting in the Southern Alps: Evidence for Early Permian crustal extension and implications for the Pangea A versus B Controversy. Tectonics, 37/10, 3668–3689. https://doi.org/10.1029/2018TC004974">https://doi.org/10.1029/2018TC004974
  66. Pomella H., Stipp M., Fügenschuh B., 2012. Thermochronological record of thrusting and strike-slip faulting along the Giudicarie fault system (Alps, Northern Italy). Tectonophysics, 579, 118–130. https://doi.org/10.1016/j.tecto.2012.04.015">https://doi.org/10.1016/j.tecto.2012.04.015
  67. Pomella H., Flöss D., Speckbacher R., Tropper P., Fügenschuh B., 2016. The western end of the Eoalpine High-Pressure Belt (Texel unit, South Tyrol/Italy). Terra Nova, 28/1, 60–69. https://doi.org/10.1111/ter.12191">https://doi.org/10.1111/ter.12191
  68. Raso G., Tropper P., Pomella H., Rammlmair D., 2025. Diabase is petrologists best friend: quantitative P-T constraints on the NW-SE trending Eoalpine metamorphic gradient in the western Austroalpine nappe stack (Ötztal Nappe, Texel Nappe, Silvretta Nappe) using metamorphosed mafic dikes. Austrian Journal of Earth Sciences, 118, 75–94. https://doi.org/10.17738/ajes.2025.0004">https://doi.org/10.17738/ajes.2025.0004
  69. Ratschbacher L., Frisch W., 1993. Palinspastic reconstruction of the pre-Triassic basement units in the Alps: the Eastern Alps. In: Raumer J.F., Neubauer F. (eds.), Pre-Mesozoic geology in the Alps. Springer Berlin Heidelberg, 41–51. https://doi.org/10.1007/978-3-642-84640-3_4">https://doi.org/10.1007/978-3-642-84640-3_4
  70. Rockenschaub M., Nowotny A., 2009. Geological map sheet 148 Brenner 1:50 000. Geologische Bundesanstallt, Wien.
  71. Rockenschaub M., Nowotny A., 2011. Geological map sheet 175 Sterzing 1:50 000. Geologische Bundesanstalt, Wien.
  72. Rondenay S., Montési L.G., Abers G.A., 2010. New geophysical insight into the origin of the Denali volcanic gap. Geophysical Journal International, 182/2, 613–630. https://doi.org/10.1111/j.1365-246X.2010.04659.x">https://doi.org/10.1111/j.1365-246X.2010.04659.x
  73. Salze M., Martinod J., Guillaume B., Kermarrec J.J., Ghiglione M.C., Sue C., 2018. Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia. Tectonophysics, 737, 27–39. https://doi.org/10.1016/j.tecto.2018.04.018">https://doi.org/10.1016/j.tecto.2018.04.018
  74. Schindlmayr A., 1999. Granitoids and Plutonic Evolution of the Ötztal-Stubai Massif – A Key for Understanding the Early Palaeozoic History of the Austroalpine Crystalline Basement on the Western Eastern Alps. University of Salzburg, Dissertation.
  75. Schmid S.M., Haas R., 1989. Transition from near-surface thrusting to Intrabasement Decollement, Schlinig Thrust, eastern Alps. Tectonics, 8/4, 697–718. https://doi.org/10.1029/TC008i004p00697">https://doi.org/10.1029/TC008i004p00697
  76. Schneider T., 2013. Petrologie und Strukturgeologie eines Nb-Ta-Sn-UP-Be-führenden Pegmatits im Austroalpinen Texel-Komplex. University of Innsbruck, Master thesis.
  77. Schulz B., Steenken A., Siegesmund S., 2008. Geodynamic evolution of an Alpine terrane - the Austroalpine basement to the south of the Tauern window as a part of the Adriatic Plate (eastern Alps). Geological Society, London, Special Publications, 298/1, 5–44. https://doi.org/10.1144/SP298.2">https://doi.org/10.1144/SP298.2
  78. Schuster R., 2003. Das eo-Alpine Ereignis in den Ostalpen: Plattentektonische Situation und interne Struktur des Ostalpinen Kristallins. Arbeitstagung der Geologischen Bundesanstalt Blatt, 148, 141–159.
  79. Siegesmund S., Oriolo S., Schulz B., Heinrichs T., Basei M.A.S., Lammerer B., 2021. The birth of the Alps: Ediacaran to Paleozoic accretion-ary processes and crustal growth along the northern Gondwana margin. International Journal of Earth Sciences, 110/4, 1321–1348. https://doi.org/10.1007/s00531-021-02019-7">https://doi.org/10.1007/s00531-021-02019-7
  80. Siegesmund S., Oriolo S., Broge A., Hueck M., Lammerer B., Basei M.A., Schulz B., 2023. Cadomian to Cenerian accretionary orogenic processes in the Alpine basement: the detrital zircon archive. International Journal of Earth Sciences, 112/4, 1157–1174. https://doi.org/10.1007/s00531-023-02305-6">https://doi.org/10.1007/s00531-023-02305-6
  81. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., et al., 2008. Plešovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005">https://doi.org/10.1016/j.chemgeo.2007.11.005
  82. Söllner V.F., Hansen B.T., 1987. „Pan-afrikanisches“ und „kaledonisches“ Ereignis im Ötztal-Kristallin der Ostalpen: Rb-Sr- und U-Pb-Alters-bestimmungen an Migmatiten und Metamorphiten. Jahrbuch der Geologischen Bundesanstalt, 130/4, 529–569.
  83. Sölva H., Thoni M., Grasemann B., Linner M., 2001. Emplacement of Eoalpine high-pressure rocks in the Austroalpine Ötztal complex, Texel group, Italy/Austria. Geodinamica Acta, 14, 345–360. https://doi.org/10.1016/S0985-3111(01)01072-5">https://doi.org/10.1016/S0985-3111(01)01072-5
  84. Spiess R., Cesare B., Mazzoli C., Sassi R., Sassi F.P., 2010. The crystalline basement of the Adria microplate in the eastern Alps: a review of the palaeostructural evolution from the Neoproterozoic to the Cenozoic. Rendiconti Lincei, 21, 31–50. https://doi.org/10.1007/s12210-010-0100-6">https://doi.org/10.1007/s12210-010-0100-6
  85. Stampfli G.M., 2000. Tethyan oceans. Geological society, London, special publications, 173/1, 1–23. https://doi.org/10.1144/GSL.SP.2000.173.01.01">https://doi.org/10.1144/GSL.SP.2000.173.01.01
  86. Stampfli G.M., Hochard C., Vérard C., Wilhem C., 2013. The formation of Pangea. Tectonophysics, 593, 1–19. https://doi.org/10.1016/j.tecto.2013.02.037">https://doi.org/10.1016/j.tecto.2013.02.037
  87. Stephan T., Kroner U.W.E., Romer R.L., 2019. The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geological Magazine, 156/2, 281–307. https://doi.org/10.1017/S0016756818000031">https://doi.org/10.1017/S0016756818000031
  88. Stephan T., Kroner U., Romer R.L., Rösel D., 2019. From a bipartite Gondwanan shelf to an arcuate Variscan belt: the early Paleozoic evolution of northern Peri-Gondwana. Earth-Science Reviews, 192, 491–512. https://doi.org/10.1016/j.earscirev.2019.03.012">https://doi.org/10.1016/j.earscirev.2019.03.012
  89. Thöni M., 1973. Ein neues Sedimentvorkommen nahe dem Westrand des Ötztaler Altkristallins und einige Bemerkungen zur Deutung der Permotrias des Jaggl als Fenster. Verh. Geol. Bundesanst. Wien, 1973, 235–712.
  90. Thöni M., 1981. Degree and evolution of the Alpine metamorphism in the Austroalpine unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr age determinations on micas. Jahrbuch der geologischen Bundesanstalt, 124/1, 111–174.
  91. Tropper P., Tribus M., Pomella H., Habler G., 2023. The metabasites from the Texel Unit (Austroalpine nappe stack): markers of Cretaceous intracontinental subduction and subsequent collision. Austrian Journal of Earth Sciences, 116, 165–179. https://doi.org/10.17738/ajes.2023.0010">https://doi.org/10.17738/ajes.2023.0010
  92. van Gool J., 1985. Structural Geology of the Southwestern Ötztal Alps Between the Weisskugel and the Reschensee. University of Utrecht. Diploma thesis.
  93. Vermeesch P., 2012. On the visualisation of detrital age distributions. Chemical Geology, 312, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021">https://doi.org/10.1016/j.chemgeo.2012.04.021
  94. Vermeesch P., 2018. IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001">https://doi.org/10.1016/j.gsf.2018.04.001
  95. Vielzeuf D., Holloway J.R., 1988. Experimental determination of the fluid-absent melting relations in the pelitic system: consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 98, 257–276. https://doi.org/10.1007/BF00375178">https://doi.org/10.1007/BF00375178
  96. Villaseca C., Barbero L., Herreros V., 1998. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 89/2, 113–119. https://doi.org/10.1017/S0263593300007045">https://doi.org/10.1017/S0263593300007045
  97. Von Raumer J.F., 1998. The Palaeozoic evolution in the Alps: from Gondwana to Pangea. Geologische Rundschau, 87, 407–435. https://doi.org/10.1007/s005310050219">https://doi.org/10.1007/s005310050219
  98. Von Raumer J., Stampfli G., Borel G., Bussy F., 2002. Organization of pre-Variscan basement areas at the north-Gondwanan margin. International Journal of Earth Sciences, 91, 35–52. https://doi.org/10.1007/s005310100200">https://doi.org/10.1007/s005310100200
  99. Von Raumer J.F., Bussy F., Schaltegger U., Schulz B., Stampfli G.M., 2013. Pre-Mesozoic Alpine basements - their place in the European Paleozoic framework. Bulletin, 125/1–2, 89–108. https://doi.org/10.1130/B30654.1">https://doi.org/10.1130/B30654.1
  100. von Raumer J.F., Stampfli G.M., 2008. The birth of the Rheic Ocean - Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics, 461/1–4, 9–20. https://doi.org/10.1016/j.tecto.2008.04.012">https://doi.org/10.1016/j.tecto.2008.04.012
  101. Viola G., Mancktelow N.S., Seward D., 2001. Late Oligocene-Neo-gene evolution of Europe-Adria collision: New structural and geochronological evidence from the Giudicarie fault system (Italian Eastern Alps). Tectonics, 20/6, 999–1020. https://doi.org/10.1029/2001TC900021">https://doi.org/10.1029/2001TC900021
  102. Whalen J.B., Currie K.L., Chappell B. W., 1987. A-type granites: geo-chemical characteristics, discrimination and petrogenesis. Contributions to mineralogy and petrology, 95, 407–419. https://doi.org/10.1007/BF00402202">https://doi.org/10.1007/BF00402202
  103. Windley B.F., Xiao W., 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Research, 61, 73–87. https://doi.org/10.1016/j.gr.2018.05.003">https://doi.org/10.1016/j.gr.2018.05.003
  104. Zanchetta S., Poli, S., Rubatto, D., Zanchi, A., Bove, G., 2013. Evidence for deep subduction of Austroalpine crust Texel Complex, NE Italy. Rendiconti Lincei, 24, 163–176. https://doi.org/10.1007/s12210-013-0239-z">https://doi.org/10.1007/s12210-013-0239-z
  105. Zantedeschi C., 1991. Geocronologia Rb–Sr sugli gneiss granitoidi del Complesso di Parcines (Alto Adige Occidentale). Memorie della Società Geologica Italiana, 43, 319–329.
  106. Zurbriggen R., 2015. Ordovician orogeny in the Alps: a reappraisal. International Journal of Earth Sciences, 104/2, 335–350. https://doi.org/10.1007/s00531-014-1090-x">https://doi.org/10.1007/s00531-014-1090-x
  107. Zurbriggen R., 2017. The Cenerian orogeny (early Paleozoic) from the perspective of the Alpine region. International Journal of Earth Sciences, 106/2, 517–529. https://doi.org/10.1007/s00531-016-1438-5">https://doi.org/10.1007/s00531-016-1438-5
  108. Zurbriggen R., 2020. Banded amphibolites in the Alps: a new interpretation in relation to early Paleozoic peraluminous magmatism. Swiss Journal of Geosciences, 113/1, 1–24. https://doi.org/10.1186/s00015-020-00362-6">https://doi.org/10.1186/s00015-020-00362-6
DOI: https://doi.org/10.17738/ajes.2025.0005 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 95 - 114
Submitted on: Oct 28, 2024
Accepted on: Feb 26, 2025
Published on: Mar 21, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Linus Klug, Nikolaus Froitzheim, Frank tomascheK, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.