Have a personal or library account? Click to login
Geochemical aspects on formation processes of vein-hosted pyrite in the Carboniferous-Permian rocks of the Karavanke/Karawanken tunnel, northwestern Slovenia
Bralia A., Sabatini G., Troja F., 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineralium Deposita 14, 353–374. https://doi.org/10.1007/BF00206365
Brenčič M., Polting,W., 2008. Grundwasser der Karawanken – Versteckter Schatz = Pozdemne vode Karavank – Skrito bogastvo. Geological Survey of Slovenia, Joanneum Research Forschungsgesellschaft m.b.h., Ljubljana, Graz, 143 pp.
Buggisch W., 1987. Die Grödener Schischten (Perm, Südalpen). Sedimentologische und geokemische Untersuchungen zur Unterscheidung mariner und kontinentaler Sedimente. Geologische Rundschau 67, 149–180.
Cafagna F., Jugo P.J., 2016. An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650 °C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE. Geochimica et Cosmochimica Acta 178, 233–258. https://doi.org/10.1016/j.gca.2015.12.035
Clark C., Grguric B., Mumm Schmidt A., 2004. Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences, northeastern South Australia. Ore Geology Reviews 25/3–4, 237–257. https://doi.org/10.1016/j.oregeorev.2004.04.003
Claypool G.E., Holser W.T., Kaplan I.R., Sakai H., Zak I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology 28, 199–260. https://doi.org/10.1016/0009-2541(80)90047-9
Clayton C., 1991. Carbon isotope fractionation during natural gas generation from kerogen. Marine and Petroleum Geology 8/2, 232–240. https://doi.org/10.1016/0264-8172(91)90010-X
Cook N., Ciobanu C.L., George L., Zhu Z.-Y., Wade B., Ehrig K., 2016. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities. Minerals 6/4, 111. https://doi.org/10.3390/min6040111
Ding T., Tan T., Wang J., Ma D., Lu J., Zhang R., Liang J., 2022. Trace-element composition of pyrite in the Baoshan Cu-Mo-Pb-Zn deposit, southern Hunan Province, China: Insights into the ore genesis. Ore Geology Reviews 147, 104989. https://doi.org/10.1016/j.oregeorev.2022.104989
Ebner F., Vozárová A., Kovács S., Kräutner H.G., Krstić B., Szederkenyi T., Jamićić D., Balen D., Belak M., Trajanova M., 2008. Devonian-Carboniferous pre-flysch and flysch environments in the Circum Panonian Region. Geologica Carpathica 59, 159–195.
Fan L., Zhou X., Luo H., Deng J., Dai L., Ju Z., Zh Z., Zou L., Ji L., Cheng L., 2016. Release of Heavy Metals from the Pyrite Tailings of Huangjiagou Pyrite Mine: Batch Experiments. Sustainability 8/1, 96. https://doi.org/10.3390/su8010096
Farabegoli E., Flügel E., Levanti D., Noe S., Pasini M., Perri M.C., Venturini C., 1986. The Traviso Breccia and Val Gardena Sandstone: Lithostratigraphy and Paleoenvironments. The Permian/Triassic boundary - Carnic and Comelico. In: Field Conference on Permian/Triassic Boundary in the South-Alpine Segment of the Western Tethys. Excursion Guidebook. Societá Geologica Italiana, Commerciale Pavese, Pavia, 55–72.
Foltyn K., Bertrandsson Erlandsson V., Zygo W., Melcher F., Pieczonka J., 2022. New perspective on trace element (Re, Ge, Ag) hosts in the Cu-Ag Kupferschiefer deposit, Poland: Insight from a LA-ICP-MS trace element study. Ore Geology Reviews 143, 104768. https://doi.org/10.1016/j.oregeorev.2022.104768
Gregory D.D., Large R.R., Halpin J. A., Lounejeva Baturina E.L., Lyons T.W., Wu S., Danyushevsky L., Sack P.J., Chappaz A., Maslennikov V.V., Bull S.W., 2015. Trace Element Content of Sedimentary Pyrite in Black Shales. Economic Geology 110/6, 1389–1410. https://doi.org/10.2113/econgeo.110.6.1389
Han Y.-S., Seong H.S., Chon C.-M., Park J.H., Ham I.-J., Yoo K., Ahn J.S., 2018. Interaction of Sb(III) with iron sulfide under anoxic conditions: Similarities and differences compared to As(III) interactions. Chemosphere 195, 762–770. https://doi.org/10.1016/j.chemosphere.2017.12.133
Hanor J.S., 2000. Barite-Celestine Geochemistry and Environments of Formation. Reviews in Mineralogy and Geochemistry 40/1, 193–275. https://doi.org/10.2138/rmg.2000.40.4
Hockmann K., Lenz M., Tandy, S., Nachtegaal M., Janousch M., Schulin R., 2014. Release of antimony from contaminated soil induced by redox changes. Journal of Hazardous Materials 275, 215–221. https://doi.org/10.1016/j.jhazmat.2014.04.065
Keith M., Haase K.M., Klem R., Krumm S, Strauss H., 2016. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chemical Geology 423, 7–18. https://doi.org/10.1016/j.chemgeo.2015.12.012
Krainer K., 1992. Facies, sedimentationsprozesse und paläogeographie im Karbon der Ost- und Süd Alpen. Jahrbuch der Geologischen Bundesanstalt 135, 87–99.
Krainer K., 1993. Late- and post-Variscan sediments of the Eastern and Southern Alps. In. von Raumer J.F., Neubauer F. (Eds.): Pre-Mesozoic Geology in the Alps. Monograph, Springer Verlag, 537–564.
Large R.R., Danyushevsky L., Hollit C., Maslennikov V., Meffre S., Gilbert S., Bull S., Scott R., Emsbo P., Thomas H., Singh B., Foster J., 2009. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology 104/5, 635–668. https://doi.org/10.2113/gsecongeo.104.5.635
Large R.R., Meffre S., Burnett R., Guy B., Bull S., Glibert S., Goemann K., Danyushevsky L., 2013. Evidence for an Intrabasinal Source and Multiple Concentration Processes in the Formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Economic Geology 108/6, 1215–1241. https://doi.org/10.2113/econgeo.108.6.1215
Leuz A.K., Monch H., Johnson C.A., 2006. Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Environmental Science and Technology 40/23, 7277–7280. https://doi.org/10.1021/es061284b
Liang X., Li B., Zhang X., Qin H., Li G., 2024. Fluid mixing, organic matter, and the origin of Permian carbonate-hosted Pb-Zn deposits in SW China: New Insights from the Fuli deposit. Minerals 14/3, 312. https://doi.org/10.3390/min14030312
Liao X., Zhang W., Chen J., Wang Q., Wu X., Ling S., Guo D., 2020. Deterioration and Oxidation Characteristics of Black Shale under Immersion and Its Impact on the Strength of Concrete. Materials 13/11, 2515. https://doi.org/10.3390/ma13112515
Ločniškar A., 2022. Predor Karavanke – 30 let pozneje. In: Rman N., Bračič Železnik B., Žvab Rožič P. (eds.), Proceedings of the 6th Slovenian geological congress – Book of abstracts, 3rd–5th October 2022, Rogaška Slatina. Slovenian Geological Society, Ljubljana,14. (in Slovenian)
Lukanin O.A., Ryzhenko B.N., Kurovskaya N.A., 2013. Zn and Pb solubility and speciation in aqueous chloride fluids at T-P parameters corresponding to granitoid magma degassing and crystallization. Geochemistry International 51, 802–830. https://doi.org/10.1134/S0016702913090048
Machel H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings – old and new insights. Sedimentary Geology 140/1–2, 143–175. https://doi.org/10.1016/S0037-0738(00)00176-7
Mederski S., Pršek J., Majzlan J., Kieferm S., Dimitrova D., Milovský R., Bender Koch C., Kozień D., 2022. Geochemistry and textural evolution of As-Tl-Sb-Hg-rich pyrite from a sediment-hosted As-Sb-Tl-Pb ± Hg ± Au mineralization in Janjevo, Kosovo. Ore Geology Reviews 151, 105221. https://doi.org/10.1016/j.oregeorev.2022.105221
Mosley L.M., Shand P., Self P., Fitzpatrick R., 2014. The geochemistry during management of lake acidification caused by the rewetting of sulfuric (pH < 4) acid sulfate soils. Applied Geochemistry 41, 49–61. https://doi.org/10.1016/j.apgeochem.2013.11.010
Novak M., Skaberne D., 2009. Upper Carboniferous and Lowe Permian. In: Pleničar M., Ogorelec B., Novak M. (eds.), The Geology of Slovenia. Geological Survey of Slovenia, Ljubljana, 99–136.
Novak M., Krainer K., 2022. The Rigelj Formation, a new lithostratigraphic unit of the Lower Permian in the Karavanke Mountains (Slovenia/Austria). Austrian Journal of Earth Sciences 115, 100–123. https://doi.org/10.17738/ajes.2022.0005
Olgaard L.D., Ko S.-C., Wong T.-F., 1995. Deformation and pore pressure in dehydrating gypsum under transiently drained conditions. Tectonophysics 245/3–4, 237–248. https://doi.org/10.1016/0040-1951(94)00237-4
Onuk P., Melcher F., Mertz-Kraus R., Gäbler H.-E., Goldmann S., 2017. Development of a matrix-matched sphalerite reference material (MUL-ZnS-1) for calibration of in situ trace element measurements by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research 41/2, 263–272. https://doi.org/10.1111/ggr.12154
Panton C., Hellstrom J., Paul B., Woodhead J., Hergt J., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectroscopy 26/12, 2508. https://doi.org/10.1039/C1JA10172B
Perfetti E., Pokrovski G.S., Ballerat-Busserolles K., Majer V., Gilbert F., 2008. Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 °C and 300 bar, and revised thermodynamic properties of As(OH)3°(aq), AsO(OH)3°(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72/3, 713–731. https://doi.org/10.1016/j.gca.2007.11.017
Pokrovski G.S., Zakirov I.L., Roux J., Testemale D., Hazemann J.-L., Bychkov A.Y., Golikova G.V., 2002a. Experimental study of arsenic speciation in vapor phase to 500°C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases. Geochimica et Cosmochimica Acta, 66/19, 3453–3480. https://doi.org/10.1016/S0016-7037(02)00946-8
Pokrovski G.S., Kara S., Roux J., 2002b. Stability and solubility of arsenopyrite, FeAsS, in crustal fluids. Geochimica et Cosmochimica Acta 66/13, 2361–2378. https://doi.org/10.1016/S0016-7037(02)00836-0
Rainer T., Sachsenhofer R.F., Rantitsch G., Herlec U., Vrabec M., 2009. Organic maturity trends across the Variscan discordance in the Alpine-Dinaric Transition Zone (Slovenia, Austria, Italy): Variscan versus Alpidic thermal overprint. Austrian Journal of Earth Sciences 102/2, 120–133.
Rainer T., Sachsenhofer R.F., Green P.F., Rantitsch G., Herlec U., Vrabec M., 2016. Thermal maturity of Carboniferous to Eocene sediments of the Alpine-Dinaric transition zone (Slovenia). International Journal of Coal Geology 157, 19–38. https://doi.org/10.1016/j.coal.2015.08.005
Raymond O.L., 1996. Pyrite composition and ore genesis in the Prince Lyell copper deposit, Mt Lyell mineral field, western Tasmania, Australia. Ore Geology Reviews 10/3–6, 231–250. https://doi.org/10.1016/0169-1368(95)00025-9
Reich M., Deditius A., Chryssoulis S., Li J.-W., Ma C.-Q., Parada M.A., Barra F., Mittermayr F., 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta 104, 42–62. https://doi.org/10.1016/j.gca.2012.11.006
Rantitsch G., Rainer T., 2003. Thermal modeling of Carboniferous to Triassic sediments of the Karawanken Range (Southern Alps) as a tool for paleogeographic reconstructions in the Alpine-Dinaridic-Pannonian realm. International Journal of Earth Sciences 92/2, 195–209. https://doi.org/10.1007/s00531-003-0312-4
Revan M.K., Genç Y., Maslennikov V.V., Maslennikova S.P., Large R.R., Danyushevsky L.V., 2014. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geology Reviews 63, 129–149. https://doi.org/10.1016/j.oregeorev.2014.05.006
Schmid S.M., Fügenschuh B., Kounov A., Maţenco L., Nievergelt P., Oberhänsli R., Pleuger J., Schefer S., Schuster R., Tomljenović B., Ustaszewski K., van Hinsbergen D.J.J., 2020. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research 78, 308–374. https://doi.org/10.1016/j.gr.2019.07.005
Shao Y.-J., Wang W.-S., Liu Q.-Q., Zhang Y., 2018. Trace Element Analysis of Pyrite from the Zhengchong Gold Deposit, Northeast Hunan Province, China: Implications for the Ore-Forming Process. Minerals 8/6, 262. https://doi.org/10.3390/min8060262
Skaberne D., Ramovš A., Ogorelec B., 2009. Middle and Upper Permian. In: Pleničar M., Ogorelec B., Nova M. (eds.), The Geology of Slovenia. Geological Survey of Slovenia, Ljubljana, 137–154.
Sverjensky D.A., 1987. The role of migrating oil field brines in the formation of sediment-hosted Cu-rich deposits. Economic Geology 82/5, 1130–1141. https://doi.org/10.2113/gsecongeo.82.5.1130
Šoster A., Bertrandsson Erlandsson V., Velojić M., Gopon P., 2023. Ultraviolet- photoluminescence and trace element analyses in Garich sphalerite from the Djebel Gustar Zn-Pb deposit, Algeria. Ore Geology Reviews 157, 105474. https://doi.org/10.1016/j.oregeorev.2023.105474
Tribovillard N., Algeo T.J., Lyons T., Riboulleau A., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232/1–2, 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012
Tu Z., W Q., He, H., Zhou S., Liu J., He H., Liu C., Dang Z., Reinfelder J.R., 2022. Reduction of acid mine drainage by passivation of pyrite surfaces: A review. Science of The Total Environment 832, 155116. https://doi.org/10.1016/j.scitotenv.2022.155116
Voigt W., Freyer D., 2023. Solubility of anhydrite and gypsum at temperatures below 100°C and the gypsum-anhydrite transition temperature in aqueous solutions: a re-assessment. Frontiers in Nuclear Engineering 2, 1208582. https://doi.org/10.3389/fnuen.2023.1208582
Vozárová A., Ebner F., Kovács S., Kräutner H.-G., Szederkenyi T., Krstić B., Sremac S., Aljinovič D., Novak M., Skaberne D., 2009. Late Variscan (Carboniferous to Permian) environments in the Circum Pannonian Region. Geologica Carpathica 60/1, 71–104. https://doi.org/10.2478/v10096-009-0002-7
Wan X.-M., Tandy S., Hockmann K., Schulin R., 2013. Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake. Environmental Pollution 172, 53–60. https://doi.org/10.1016/j.envpol.2012.08.010
Wang D., Wang Q., Wang T., 2010. Shape controlled growth of pyrite FeS2 crystallites via a polymer-assisted hydrothermal route. CrystEngComm 12, 3797–3805. https://doi.org/10.1039/C004266H
Wilson S.A., Ridley W.I., Koenig A.E., 2002. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. Journal of Analytical Atomic Spectrometry 17, 406–409. https://doi.org/10.1039/b108787h
Yardley B.W.D., 2005. Metal Concentrations in Crustal Fluids and Their Relationship to Ore Formation. Economic Geology 100/4, 613–632. https://doi.org/10.2113/gsecongeo.100.4.613
Yuan W., Chen J., Teng H., Chetelat B., Cai H., Liu J., Wang Z., Bouchez J., Moynier F., Gaillardet J., Schott J., Liu C., 2021. A review on the elemental and isotopic geochemistry of gallium. Global Biogeochemical Cycles 35/9, e2021GB007033. https://doi.org/10.1029/2021GB007033
Zhang Y., Fang Q., Lv J., Fu Y., Zhu J., Peng G., Li M., Wu X., Wang H., Chen Z., 2023. Source control on the acid mine drainage produced by the oxidation of pyrite and sulfur-containing uranium tailings based on the microbially induced carbonate precipitation technology. Journal of Cleaner Production 428, 139444. https://doi.org/10.1016/j.jclepro.2023.139444
Zhong R., Brugger J., Chen Y., Li W. 2015. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chemical Geology 395, 154–164. https://doi.org/10.1016/j.chemgeo.2014.12.008