Azuma, S., Katayama, I., Nakakuki, T., 2014. Rheological decoupling at the Moho and implication to Venusian tectonics. Scientific Reports 4, 4403. https://doi.org/10.1038/srep04403
Barton, C.M., England, P.C., 1979. Shear heating at the Olympos (Greece) thrust and the deformation properties of carbonates at geological strain rates. Geological Society of America Bulletin 90, 483. https://doi.org/10.1130/0016-7606(1979)90<483:SHATOG>2.0.CO;2
Bernoulli, D., Jenkyns, H.C., 2009. Ophiolites in ocean-continent transitions: From the Steinmann Trinity to sea-floor spreading. Transition Océan-Continent 341, 363–381. https://doi.org/10.1016/j.crte.2008.09.009
Borojević Šoštarić, S., Palinkaš, A.L., Neubauer, F., Cvetković, V., Bernroider, M., Genser, J., 2014. The origin and age of the metamorphic sole from the Rogozna Mts., Western Vardar Belt: New evidence for the one-ocean model for the Balkan ophiolites. Lithos 192–195, 39–55. https://doi.org/10.1016/j.lithos.2014.01.011
Burg, J.-P., Gerya, T.V., 2005. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology 23, 75–95. https://doi.org/10.1111/j.1525-1314.2005.00563.x
Burg, J.-P., Moulas, E., 2022. Cooling-rate constraints from metapelites across two inverted metamorphic sequences of the Alpine-Himalayan belt; evidence for viscous heating. Journal of Structural Geology 156, 104536. https://doi.org/10.1016/j.jsg.2022.104536
Cloos, M., 1993. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. GSA Bulletin 105, 715–737. https://doi.org/10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2
Dilek, Y., Furnes, H., 2019. Tethyan ophiolites and Tethyan seaways. Journal of the Geological Society 176, 899–912. https://doi.org/10.1144/jgs2019-129
Dilek, Y., Furnes, H., Shallo, M., 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Research 11, 453–475. https://doi.org/10.1016/j.gr.2007.01.005
Dimo-Lahitte, A., Monié, P., Vergély, P., 2001. Metamorphic soles from the Albanian ophiolites: Petrology, 40Ar/39Ar geochronology, and geodynamic evolution. Tectonics 20, 78–96. https://doi.org/10.1029/2000TC900024
Duprat-Oualid, S., Yamato, P., Schmalholz, S.M., 2015. A dimensional analysis to quantify the thermal budget around lithospheric-scale shear zones. Terra Nova 27, 163–168. https://doi.org/10.1111/ter.12144
Duretz, T., Agard, P., Yamato, P., Ducassou, C., Burov, E.B., Gerya, T.V., 2016. Thermo-mechanical modeling of the obduction process based on the Oman Ophiolite case. Gondwana Research 32, 1–10. https://doi.org/10.1016/j.gr.2015.02.002
El-Shazly, A.K., Coleman, R.G., 1990. Metamorphism in the Oman Mountains in relation to the Semail ophiolite emplacement. Geological Society, London, Special Publications 49, 473–493. https://doi.org/10.1144/GSL.SP.1992.049.01.30
Evans, B., Goetze, C., 1979. The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. Journal of Geophysical Research: Solid Earth 84, 5505–5524. https://doi.org/10.1029/JB084iB10p05505
Forsyth, D., Uyeda, S., 1975. On the Relative Importance of the Driving Forces of Plate Motion*. Geophysical Journal of the Royal Astronomical Society 43, 163–200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
Garber, J.M., Rioux, M., Kylander-Clark, A.R.C., Hacker, B.R., Vervoort, J.D., Searle, M.P., 2020. Petrochronology of Wadi Tayin Metamorphic Sole Metasediment, With Implications for the Thermal and Tec-tonic Evolution of the Samail Ophiolite (Oman/UAE). Tectonics 39, e2020TC006135. https://doi.org/10.1029/2020TC006135
Garfunkel, Z., 2006. Neotethyan ophiolites: formation and obduction within the life cycle of the host basins. Geological Society, London, Special Publications 260, 301–326. https://doi.org/10.1144/GSL.SP.2006.260.01.13
Graciansky, P.-C.D., Roberts, D.G., Tricart, P., 2011b. Chapter Fourteen - The Birth of the Western and Central Alps: Subduction, Obduction, Collision. In: Pierre-Charles De Graciansky, D.G.R. and P.T. (Ed.), Developments in Earth Surface Processes. Elsevier, 289–315. https://doi.org/10.1016/S0928-2025(11)14014-6
Graham, C.M., England, P.C., 1976. Thermal regimes and regional meta-morphism in the vicinity of overthrust faults: an example of shear heating and inverted metamorphic zonation from southern California. Earth and Planetary Science Letters 31, 142–152. https://doi.org/10.1016/0012-821X(76)90105-9
Gruntfest, I.J., 1963. Thermal Feedback in Liquid Flow; Plane Shear at Constant Stress. Transactions of the Society of Rheology 7, 195–207. https://doi.org/10.1122/1.548954
Guilmette, C., Smit, M.A., van Hinsbergen, D.J.J., Gürer, D., Corfu, F., Charette, B., Maffione, M., Rabeau, O., Savard, D., 2018. Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nature Geoscience 11, 688–695. https://doi.org/10.1038/s41561-018-0209-2
Hacker, B.R., 1990. Simulation of the metamorphic and deformational history of the metamorphic sole of the Oman Ophiolite. Journal of Geophysical Research: Solid Earth 95, 4895–4907. https://doi.org/10.1029/JB095iB04p04895
Hacker, B.R., Mosenfelder, J.L., Gnos, E., 1996. Rapid emplacement of the Oman ophiolite: Thermal and geochronologic constraints. Tec-tonics 15, 1230–1247. https://doi.org/10.1029/96TC01973
Ibragimov, I., Moulas, E., 2024. Role of continental margin architecture in models of ophiolite emplacement. Journal of the Geological Society 181, jgs2023-063. https://doi.org/10.1144/jgs2023-063
Jones, G., Robertson, A., 1991. Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northwestern Greece. Journal of the Geological Society 148, 267. https://doi.org/10.1144/gsjgs.148.2.0267
Joule, J.P., Faraday, M., 1850. III. On the mechanical equivalent of heat. Philosophical Transactions of the Royal Society of London 140, 61–82. https://doi.org/10.1098/rstl.1850.0004
Karaoğlan, F., Parlak, O., Klötzli, U., Koller, F., Rızaoğlu, T., 2013. Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia. Slab Window Magmatism and Convergent Margin Tectonics 4, 399–408. https://doi.org/10.1016/j.gsf.2012.11.011
Kiss, D., Podladchikov, Y., Duretz, T., Schmalholz, S.M., 2019. Spontaneous generation of ductile shear zones by thermal softening: Localization criterion, 1D to 3D modelling and application to the lithosphere. Earth and Planetary Science Letters 519, 284–296. https://doi.org/10.1016/j.epsl.2019.05.026
Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., Müller, R.D., 2021. Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps. Solid Earth 12, 885–913. https://doi.org/10.5194/se-12-885-2021
Liati, A., Gebauer, D., Fanning, C.M., 2004. The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U-Pb ion microprobe (SHRIMP) zircon ages. Chemical Geology 207, 171–188. https://doi.org/10.1016/j.chemgeo.2004.02.010
McCarthy, A., Chelle-Michou, C., Müntener, O., Arculus, R. and Blundy, J. 2018. Subduction initiation without magmatism: The case of the missing Alpine magmatic arc. Geology, 46, 1059–1062, https://doi.org/10.1130/G45366.1.
Malpas, J., 1979. The dynamothermal aureole of the Bay of Islands ophiolite suite. Canadian Journal of Earth Sciences 16, 2086–2101. https://doi.org/10.1139/e79-198
Moulas, E., Burg, J.-P., Podladchikov, Y., 2014. Stress field associated with elliptical inclusions in a deforming matrix: Mathematical model and implications for tectonic overpressure in the lithosphere. Tectono-physics 631, 37–49. https://doi.org/10.1016/j.tecto.2014.05.004
Moulas, E., Podladchikov, Y.Y., Aranovich, L.Y., Kostopoulos, D.K., 2013. The problem of depth in geology: When pressure does not translate into depth. Petrology 21, 527–538. https://doi.org/10.1134/S0869591113060052
Myhill, R., 2011. Constraints on the evolution of the Mesohellenic Ophiolite from subophiolitic metamorphic rocks. Geological Society of America Special Papers 480, 75–94. https://doi.org/10.1130/2011.2480(03)
Petroccia, A., Carosi, R., Montomoli, C., Iaccarino, S., Vitale Brovarone, A., 2022. Deformation and temperature variation along thrust-sense shear zones in the hinterland-foreland transition zone of collisional settings: A case study from the Barbagia Thrust (Sardinia, Italy). Journal of Structural Geology 161, 104640. https://doi.org/10.1016/j.jsg.2022.104640
Pomonis, P., Tsikouras, B., Hatzipanagiotou, K., 2002. Origin, evolution and radiometric dating of subophiolitic metamorphic rocks from the Koziakas ophiolite (W. Thessaly, Greece). Neues Jahrbuch Für Mineralogie, Abhandlungen 177, 255–276. https://doi.org/10.1127/0077-7757/2002/0177-0255
Reitan, P.H., 1968. Frictional heat during metamorphism: Quantitative evaluation of concentration of heat generation in time. Lithos 1, 151–163. https://doi.org/10.1016/S0024-4937(68)80005-2
Rioux, M., Garber, J., Bauer, A., Bowring, S., Searle, M., Kelemen, P., Hacker, B., 2016. Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophiolite formation from high-precision U-Pb zircon geochronology. Earth and Planetary Science Letters 451, 185–195. https://doi.org/10.1016/j.epsl.2016.06.051
Spray, J.G., 1984. Possible causes and consequences of upper mantle decoupling and ophiolite displacement. Geological Society, London, Special Publications 13, 255. https://doi.org/10.1144/GSL.SP.1984.013.01.21
Spray, J.G., Roddick, J.C., 1980. Petrology and 40Ar/39Ar geochronology of some hellenic sub-ophiolite metamorphic rocks. Contributions to Mineralogy and Petrology 72, 43–55. https://doi.org/10.1007/BF00375567
Stüwe, K., Ehlers, K., 1998. Distinguishing Cooling Histories using Thermometry. Interpretations of Cooling Curves with some Examples from the Glein-Koralm Region and the Central Swiss Alps. Mitteilungen Der Österreichischen Geologischen Gesellschaft 89, 201–212.
Vardoulakis, I., 2002. Steady shear and thermal run-away in clayey gouges. International Journal of Solids and Structures 39, 3831–3844. https://doi.org/10.1016/S0020-7683(02)00179-8
Wakabayashi, J., Dilek, Y., 2003. What constitutes ‘emplacement’ of an ophiolite?: Mechanisms and relationship to subduction initiation and formation of metamorphic soles. Geological Society, London, Special Publications 218, 427–447. https://doi.org/10.1144/GSL.SP.2003.218.01.22
Wakabayashi, J., Dilek, Y., 2000. Spatial and temporal relationships between ophiolites and their metamorphic soles: A test of models of forearc ophiolite genesis. In: Dilek, Y., Moores, E.M., Elthon, D., Nicolas, A. (Eds.), Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America, 0. https://doi.org/10.1130/0-8137-2349-3.53
Whitechurch, H., Parrot, J., 1978. Ecailles métamorphiques infrapéridotiques dans le Pinde septentrional (Grèce): croûte océanique, métamorphisme et subduction. Comptes Rendus de l’Académie Des Sciences Paris 286, 1491–1494.
Young, J., 2015. Heat, work and subtle fluids: a commentary on Joule (1850) ‘On the mechanical equivalent of heat.’ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, 20140348. https://doi.org/10.1098/rsta.2014.0348
Yuen, D.A., Fleitout, L., Schubert, G., Froidevaux, C., 1978. Shear deformation zones along major transform faults and subducting slabs. Geophysical Journal of the Royal Astronomical Society 54, 93–119. https://doi.org/10.1111/j.1365-246X.1978.tb06758.x