Have a personal or library account? Click to login
Old orogen – young topography: Evidence for relief rejuvenation in the Bohemian Massif Cover

Old orogen – young topography: Evidence for relief rejuvenation in the Bohemian Massif

Open Access
|Feb 2023

References

  1. Badura J., Zuchiewicz W., Štěpančiková P., Przybylski B., Kontny B., Cacoń, S., 2007. The sudetic marginal fault: A young morphophotectonic feature at the NE margin of the Bohemian Massif, Central Europe. Acta Geodynamica et Geomaterialia, 4/4, 7–29
  2. Balatka B., Kalvoda J., 2008. Evolution of Quaternary river terraces related to the uplift of the central part of the Bohemian Massif. Geografie. Sbornik Ceské geografické spolecnosti, 113/3, 205–222
  3. Baran R., Friedrich A.M., Schlunegger F., 2014. The late Miocene to Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab unloading beneath the western Alps rather than global climate change. Lithosphere, 6/2, 124–131. https://doi.org/10.1130/L307.1
  4. Baumann S., Robl J., Prasicek G., Salcher B., Keil M., 2018. The effects of lithology and base level on topography in the northern alpine foreland. Geomorphology, 313, 13–26. https://doi.org/10.1016/j.geomorph.2018.04.006
  5. Bernard T., Sinclair H.D., Gailleton B., Mudd S.M., Ford M., 2019. Litho-logical control on the post-orogenic topography and erosion history of the Pyrenees. Earth and Planetary Science Letters, 518, 53–66. https://doi.org/10.1016/j.epsl.2019.04.034
  6. Bishop P., Hoey T. B., Jansen J D., Artza I.L., 2005. Knickpoint recession rate and catchment area: the case of uplifted rivers in Eastern Scotland. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 30/6, 767–778. https://doi.org/10.1002/esp.1191
  7. Bourgeois O., Ford M., Diraison M., Veslud C., Gerbault M., Pik R., Ruby N., Bonnet S., 2007. Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. International Journal of Earth Sciences, 96/6, 1003–1031. 10.1007/s00531-007-0202-2
  8. Brandmayr M., Loizenbauer J., Wallbrecher E., 1999. Contrasting PT conditions during conjugate shear zone development in the Southern Bohemian Massif, Austria. Mitteilungen der Österreichischen Geologischen Gesellschaft, 90, 11–29
  9. Brocklehurs, S.H., Whipple K.X., 2004. Hypsometry of glaciated landscapes. Earth Surface Processes and Landforms, 29/7, 907–926. https://doi.org/10.1002/esp.1083
  10. Cháb J., Stráník Z., Eliáš M., 2007. Geologická mapa České republiky 1: 500 000, Česká geologická služba.
  11. Champagnac J., Molnar P., Anderson R., Sue C., Delacou B., 2007. Quaternary erosion-induced isostatic rebound in the western Alps. Geology, 35/3, 195–198. https://doi.org/10.1130/G23053A.1
  12. Cheng K.-Y., Hung J.-H., Chang H.-C., Tsai H., Sung Q.-C., 2012. Scale independence of basin hypsometry and steady state topography. Geomorphology, 171, 1–11. https://doi.org/10.1016/j.geo-morph.2012.04.022
  13. Danišík M., Migoń P., Kuhlemann J., Evans N. J., Dunkl I., Frisch, W., 2010. Thermochronological constraints on the long-term erosional history of the Karkonosze Mts., Central Europe. Geomorphology, 117/1-2, 78–89. https://doi.org/10.1016/j.geomorph.2009.11.010
  14. Davis W.M., 1899. The geographical cycle. The Geographical Journal, 14/5, 481–504
  15. Dethier D.P., Ouimet W., Bierman P.R., Rood D.H., Balco G., 2014. Basins and bedrock: Spatial variation in 10Be erosion rates and increasing relief in the southern Rocky Mountains, USA. Geology, 42/2, 167-170. https://doi.org/10.1130/G34922.1
  16. Egger H., Krenmayr H., Mandl G., Matura A., Nowotny A., Pascher G., Pestal G., Pistotnik J., Rockenschaub M., Schnabel W., 1999. Geologische Übersichtskarte der Republik Österreich 1: 1500000. Geologische Bundesanstalt, Wien.
  17. Egholm D., Nielsen S., Pedersen V., Lesemann J.-E., 2009. Glacial effects limiting mountain height. Nature, 460/7257, 884–887. https://doi.org/10.1038/nature08263
  18. England P., Houseman G., 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. Journal of Geophysical Research: Solid Earth, 91/B3, 3664–3676. https://doi.org/10.1029/JB091iB03p03664
  19. Fan N., Kong P., Robl J.C., Zhou H., Wang X., Jin Z., Liu X., 2021. Timing of river capture in major Yangtze River tributaries: Insights from sediment provenance and morphometric indices. Geomorphology, 392, 107915. https://doi.org/10.1016/j.geomorph.2021.107915
  20. Finger F., Gerdes A., Janousek V., Rene M., Riegler G., 2007. Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. Journal of Geosciences, 52/1–2, 9–28. http://doi.org/10.3190/jgeosci.005
  21. Finger F., Gerdes A., Rene M., Riegler G., 2009. The Saxo-Danubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the southwestern sector of the Bohemian Massif (Variscan orogen). Geologica Carpathica, 60/3, 205. https://doi.org/10.2478/v10096-009-0014-3
  22. Flint J.-J., 1974. Stream gradient as a function of order, magnitude, and discharge. Water Resources Research, 10/5, 969–973. https://doi.org/10.1029/WR010i005p00969
  23. Forte A. M., Whipple K.X., 2018. Criteria and tools for determining drainage divide stability. Earth and Planetary Science Letters, 493, 102–117. https://doi.org/10.1016/j.epsl.2018.04.026
  24. Forte A.M., Yanites B.J., Whipple K.X., 2016. Complexities of landscape evolution during incision through layered stratigraphy with contrasts in rock strength. Earth Surface Processes and Landforms, 41/12, 1736–1757. https://doi.org/10.1002/esp.3947
  25. Franke W., 2014. Topography of the Variscan orogen in Europe: failed– not collapsed. International Journal of Earth Sciences, 103/5, 1471–1499. https://doi.org/10.1007/s00531-014-1014-9
  26. Fuchs G., Matura A., 1976. Zur Geologie des Kristallins der südlichen Bohmischen Masse.(Géologie du cristallin dans le Sud du massif de Bohême). Jahrbuch der Geologischen Bundesanstalt Wien, 119/1, 1–45
  27. Gallen S.F., 2018. Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains. Earth and Planetary Science Letters, 493, 150–160. https://doi.org/10.1016/j.epsl.2018.04.029
  28. Genser J., Cloetingh S.A., Neubauer F., 2007. Late orogenic rebound and oblique Alpine convergence: new constraints from subsidence analysis of the Austrian Molasse basin. Global and Planetary Change, 58/1–4, 214–223. https://doi.org/10.1016/j.gloplacha.2007.03.010
  29. Gusterhuber J., Dunkl I., Hinsch R., Linzer H.-G., Sachsenhofer R., 2012. Neogene uplift and erosion in the Alpine foreland basin (upper Austria and Salzburg). Geologica Carpathica, 63/4, 295. https://doi.org/10.2478/v10096-012-0023-5
  30. Hack J.T., 1957. Studies of longitudinal stream profiles in Virginia and Maryland: US Government Printing Office.
  31. Hantke R., 1993. Flussgeschichte Mitteleuropas: Skizzen zu einer Erd-, Vegetations-, und Klimageschichte der letzten 40 Millionen Jahre, Enke, Stuttgard, 460 pp.
  32. Harel M.A., Mudd S.M., Attal M., 2016. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology, 268, 184–196. https://doi.org/10.1016/j.geomorph.2016.05.035
  33. Hejl E., Coyle D., Lal N., den Haute P.V., Wagner G.A., 1997. Fission-track dating of the western border of the Bohemian massif: thermochronology and tectonic implications. Geologische Rundschau, 86/1, 210–219. 10.1007/s005310050133
  34. Hejl E., Sekyra G., Friedl G., 2003. Fission-track dating of the south-eastern Bohemian massif (Waldviertel, Austria): thermochronology and long-term erosion. International Journal of Earth Sciences, 92/5, 677–690. https://doi.org/10.1007/s00531-003-0342-y
  35. Hergarten S., Robl J., Stüwe K., 2016. Tectonic geomorphology at small catchment sizes–extensions of the stream-power approach and the χ method. Earth Surface Dynamics, 4/1, 1–9. https://doi.org/10.5194/esurf-4-1-2016
  36. Hergarten S., Wagner T., Stüwe K., 2010. Age and prematurity of the Alps derived from topography. Earth and Planetary Science Letters, 297/3–4, 453–460. https://doi.org/10.1016/j.epsl.2010.06.048
  37. Homolová D., Lomax J., Špaček P., Decker K., 2012. Pleistocene terraces of the Vltava River in the Budějovice basin (Southern Bohemian Massif): New insights into sedimentary history constrained by luminescence data. Geomorphology, 161–162, 58–72. https://doi.org/10.1016/j.geomorph.2012.04.001
  38. Howard A.D., Dietrich W.E., Seidl M.A., 1994. Modeling fluvial erosion on regional to continental scales. Journal of Geophysical Research: Solid Earth, 99/B7, 13971–13986. https://doi.org/10.1029/94JB00744
  39. Kirby E., Whipple K.X., 2012. Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
  40. Kossmat F., 1927. Gliederung des varistischen Gebirgsbaues. Abhandlungen Sächsischen Geologischen Landesamts, 1, 1–39.
  41. Kroner U., Romer R.L., 2013. Two plates — Many subduction zones: The Variscan orogeny reconsidered. Gondwana Research, 24/1, 298–329. https://doi.org/10.1016/j.gr.2013.03.001
  42. Kuhlemann J., Dunkl I., Brügel A., Spiegel C., Frisch W., 2006. From source terrains of the Eastern Alps to the Molasse Basin: Detrital record of non-steady-state exhumation. Tectonophysics, 413/3–4, 301–316. https://doi.org/10.1016/j.tecto.2005.11.007
  43. Kühni A., Pfiffner O.-A., 2001. The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from a 250-m DEM. Geomorphology, 41/4, 285–307. https://doi.org/10.1016/S0169-555X(01)00060-5
  44. Lague D., 2014. The stream power river incision model: evidence, theory and beyond. Earth Surface Processes and Landforms, 39/1, 38–61. https://doi.org/10.1002/esp.3462
  45. Lange J.-M., Tonk C., Wagner G. A., 2008. Apatitspaltspurdaten zur postvariszischen thermotektonischen Entwicklung des säch -sischen Grundgebirges - erste Ergebnisse. Zeitschrift der deutschen Gesellschaft für Geowissenschaften/159, 122–132.
  46. Legrain N., Dixon J., Stüwe K., von Blanckenburg F., Kubik P., 2015. Post-Miocene landscape rejuvenation at the eastern end of the Alps. Lithosphere, 7/1, 3–13. https://doi.org/10.1130/L391.1
  47. Legrain N., Stüwe K., Wölfler A., 2014. Incised relict landscapes in the eastern Alps. Geomorphology, 221, 124–138. https://doi.org/10.1016/j.geomorph.2014.06.010
  48. Lenhardt W.A., Švancara J., Melichar P., Pazdírkov, J., Havíř J., Sýkorová Z., 2007. Seismic activity of the Alpine-Carpathian-Bohemian Massif region with regard to geological and potential field data. Geologica Carpathica, 58/4, 397–412.
  49. Liebl M., Robl J., Egholm D.L., Prasicek G., Stüwe K., Gradwohl G., Hergarten S., 2021. Topographic signatures of progressive glacial landscape transformation. Earth Surface Processes and Landforms, 46/10, 1964–1980. https://doi.org/10.1002/esp.5139
  50. Linner M., Finger F., Reiter E., 2011. Moldanubikum (Kristallin der Böhmischen Masse). In: Rupp, C., Linner, M., Mandl, G. (eds.), Oberösterreich, Geologie der österreichischen Bundesländer: Wien, Geologische Bundesanstalt, pp. 29–50.
  51. Mackenbach R., 1984. Jungtertiäre Entwässerungsrichtungen zwischen Passau und Hausruck (O.Ö). Köln, Geologisches Institut der Universität Köln, Sonderveröffentlichung, 175 pp
  52. Mandal S.K., Lupker M., Burg, J.-P. Valla P. G., Haghipour N., Christl, M., 2015. Spatial variability of 10Be-derived erosion rates across the southern Peninsular Indian escarpment: A key to landscape evolution across passive margins. Earth and Planetary Science Letters, 425, 154–167. https://doi.org/10.1016/j.epsl.2015.05.050
  53. Miller S.R., Sak P.B., Kirby E., Bierman P.R., 2013. Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates. Earth and Planetary Science Letters, 369–370, 1–12. https://doi.org/10.1016/j.epsl.2013.04.007
  54. Nývlt D., Engel Z., Tyráček J., 2011. Pleistocene glaciations of Czechia, Developments in quaternary sciences, Volume 15, Elsevier, pp. 37–46. https://doi.org/10.1016/B978-0-444-53447-7.00004-0
  55. O’Brien P.J., Carswell D. A., 1993. Tectonometamorphic evolution of the Bohemian Massif: evidence from high pressure metamorphic rocks. Geologische Rundschau, 82/3, 531–555. 10.1007/BF00212415
  56. O’Callaghan J.F., Mark D.M., 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing, 28/3, 323–344. https://doi.org/10.1016/S0734-189X(84)80011-0
  57. Ohmori H., 1993. Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology, 8/4, 263–277. https://doi.org/10.1016/0169-555X(93)90023-U
  58. Olivetti V., Godard V., Bellier O., 2016. Cenozoic rejuvenation events of Massif Central topography (France): Insights from cosmogenic denudation rates and river profiles. Earth and Planetary Science Letters, 444, 179–191. https://doi.org/10.1016/j.epsl.2016.03.049
  59. Pánek T., Kapustová V., 2016. Long-Term Geomorphological History of the Czech Republic. in Pánek, T., Hradecký, J., eds., Landscapes and Landforms of the Czech Republic: Cham, Springer International Publishing, pp. 29–39. https://doi.org/10.1007/978-3-319-27537-6_4
  60. Perron, J.T., Royden L., 2013. An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms, 38/6, 570–576. https://doi.org/10.1002/esp.3302
  61. Popotnig A., Tscheg, D., Decker K., 2013. Morphometric analysis of a reactivated Variscan fault in the southern Bohemian Massif (Budějo-vice basin, Czech Republic). Geomorphology, 197, 108–122. https://doi.org/10.1016/j.geomorph.2013.04.042
  62. Robl J., Heberer B., Prasicek G., Neubauer F., Hergarten S., 2017a. The topography of a continental indenter: The interplay between crustal deformation, erosion, and base level changes in the eastern Southern Alps. Journal of Geophysical Research: Earth Surface, 122/1, 310–334. https://doi.org/10.1002/2016JF003884
  63. Robl J., Hergarten S., Prasicek, G., 2017b. The topographic state of fluvially conditioned mountain ranges. Earth-Science Reviews, 168, 190–217. https://doi.org/10.1016/j.earscirev.2017.03.007
  64. Robl J., Hergarten S., Stüwe K., 2008a. Morphological analysis of the drainage system in the Eastern Alps. Tectonophysics, 460/1, 263–277. https://doi.org/10.1016/j.tecto.2008.08.024
  65. Robl J., Prasicek G., Hergarten S., Stüwe K., 2015. Alpine topography in the light of tectonic uplift and glaciation. Global and Planetary Change, 127, 34–49. https://doi.org/10.1016/j.gloplacha.2015.01.008
  66. Robl J., Stüwe K., 2005a. Continental collision with finite indenter strength: 1. Concept and model formulation. Tectonics, 24/4. https://doi.org/10.1029/2004TC001727
  67. Robl J., Stüwe K., 2005b. Continental collision with finite indenter strength: 2. European Eastern Alps. Tectonics, 24/4. https://doi.org/10.1029/2004TC001741
  68. Robl J., Stüwe K., Hergarten S., 2008b. Channel profiles around Himalayan river anticlines: Constraints on their formation from digital elevation model analysis. Tectonics, 27/3. https://doi.org/10.1029/2007TC002215
  69. Royden L., Taylor Perron J., 2013. Solutions of the stream power equation and application to the evolution of river longitudinal profiles. Journal of Geophysical Research: Earth Surface, 118/2, 497–518. https://doi.org/10.1002/jgrf.20031
  70. Schäfer A., 1989. Variscan molasse in the Saar-Nahe Basin (W-Germany), Upper Carboniferous and Lower Permian. Geologische Rundschau, 78/2, 499–524. https://doi.org/10.1007/BF01776188
  71. Schwanghart W., Kuhn N.J., 2010. TopoToolbox: A set of Matlab functions for topographic analysis. Environmental Modelling & Software, 25/6, 770–781. https://doi.org/10.1016/j.envsoft.2009.12.002
  72. Schwanghart W., Scherler D., 2014. Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2/1, 1–7. https://doi.org/10.5194/esurf-2-1-2014
  73. Schwanghart W., Scherler D., 2017. Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques. Earth Surf. Dynam., 5/4, 821–839. 10.5194/esurf-5-821-2017
  74. Small E.E., Anderson R.S., 1998. Pleistocene relief production in Lar-amide mountain ranges, western United States. Geology, 26/2, 123–126. https://doi.org/10.1130/0091-7613(1998)026<0123:PRPI LM>2.3.CO;2
  75. Strahler A.N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63/11, 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
  76. Stüwe K., Hohmann K., 2021. The Relic Landscapes of the Grazer Bergland: Revisiting the Piedmonttreppen Debate. Austrian Journal of Earth Sciences, 114/1, 46–65. https://doi.org/10.17738/ajes.2021.0003
  77. Trost G., Robl J., Hergarten S., Neubauer F., 2020. The destiny of orogen-parallel streams in the Eastern Alps: the Salzach–Enns drainage system. Earth Surface Dynamics, 8/1, 69–85. https://doi.org/10.5194/esurf-8-69-2020
  78. Tschegg D., Decker K., 2013. Distinguishing Quaternary and Pre-Quaternary clastic sediments in the vicinity of České Budejovice (Southern Bohemian Massif, Czech Republic). Austrian Journal of Earth Sciences, 106/1, 72–89.
  79. Tyráček J., Havlíček P., 2009. The fluvial record in the Czech Republic: A review in the context of IGCP 518. Global and Planetary Change, 68/4, 311–325. https://doi.org/10.1016/j.gloplacha.2009.03.007
  80. Vamvaka A., Siebel W., Chen F., Rohrmüller J., 2014. Apatite fission-track dating and low-temperature history of the Bavarian Forest (southern Bohemian Massif). International Journal of Earth Sciences, 103/1, 103–119. https://doi.org/10.1007/s00531-013-0945-x
  81. Wagner T., Fabel D., Fiebig M., Häuselmann P., Sahy D., Xu S., Stüwe K., 2010. Young uplift in the non-glaciated parts of the Eastern Alps. Earth and Planetary Science Letters, 295/1, 159–169. https://doi.org/10.1016/j.epsl.2010.03.034
  82. Wagner T., Fritz H., Stüwe K., Nestroy O., Rodnight H., Hellstrom J., Benischke R., 2011. Correlations of cave levels, stream terraces and planation surfaces along the River Mur—Timing of landscape evolution along the eastern margin of the Alps. Geomorphology, 134/1, 62–78. https://doi.org/10.1016/j.geomorph.2011.04.024
  83. Wessely G., 2006. Geologie der österreichischen Bundesländer: Niederösterreich. Geologische Bundesanstalt, Wien, 416 pp.
  84. Whipple K.X., 2004. Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences, 32/1, 151–185. https://doi.org/10.1146/annurev.earth.32.101802.120356
  85. Whipple K.X., Tucker G.E., 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104/B8, 17661–17674. https://doi.org/10.1029/1999JB900120
  86. Willett S.D., McCoy S.W., Perron J.T., Goren L., Chen C.-Y., 2014. Dynamic Reorganization of River Basins. Science, 343/6175, 1–9. https://doi.org/10.1126/science.1248765
  87. Wobus C., Whipple K.X., Kirby E., Snyder N., Johnson J., Spyropolou K., Crosby B., Sheehan D., 2006. Tectonics from topography: Procedures, promise, and pitfalls. in Willett S.D., Hovius N., Brandon M.T., Fisher D.M., eds., Tectonics, Climate, and Landscape Evolution, Volume 398, Geological Society of America, pp. 55-74
  88. Ziegler P.A., Dèzes P., 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary Change, 58/1, 237–269. https://doi.org/10.1016/j.gloplacha.2006.12.004
DOI: https://doi.org/10.17738/ajes.2023.0002 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 17 - 38
Submitted on: Sep 27, 2022
Accepted on: Jan 29, 2023
Published on: Feb 17, 2023
Published by: Austrian Geological Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Klaus Wetzlinger, Jörg Robl, Moritz Liebl, Fabian Dremel, Kurt Stüwe, Christoph von Hagke, published by Austrian Geological Society
This work is licensed under the Creative Commons Attribution 4.0 License.