Have a personal or library account? Click to login
Microsedimentology of tills near Ainet, Austria - were palaeo-ice streams in the European Alps underlain by soft deforming bed zones? Cover

Microsedimentology of tills near Ainet, Austria - were palaeo-ice streams in the European Alps underlain by soft deforming bed zones?

Open Access
|Jul 2020

References

  1. Andreassen, K., Winsborrow, M., 2009. Signature of ice streaming in Bjørnøyrenna, Polar North Atlantic, through the Pleistocene and implications for ice-stream dynamics. Annals of Glaciology 50, 17-26. http://doi:10.3189/17275640978962423810.3189/172756409789624238
  2. Ballas, G., Fossen, H., Soliva, R., 2015. Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. Journal of Structural Geology 76,1-21. http://dx.doi.org/10.1016/j.jsg.2015.03.01310.1016/j.jsg.2015.03.013
  3. Brandes, C., Igel, J., Loewer, M., Tanner, D.C., Lang, J., Müller, K., Winsemann, J., 2018. Visualisation and analysis of shear-deformation bands in unconsolidated Pleistocene sand using ground-penetrating radar: Implications for paleoseismological studies. Sedimentary Geology 367, 135-145. https://doi.org/10.1016/j.sedgeo.2018.02.00510.1016/j.sedgeo.2018.02.005
  4. Brisbourne, A.M., Smith, A.M., Vaughan, D.G., King, E.C., Davies, D., Bingham, R.G., Smith, E.C., Nias, I.J., Rosier, S.H.R., 2017. Bed conditions of Pine Island Glacier, West Antarctica. Journal of Geophysical Research: Earth Surface 122, 419-433. https://doi:10.1002/2016JF00403310.1002/2016JF004033
  5. Büchi, M.W., Frank, S.M., Graf, H.R., Menzies, J., Anselmetti, F.S., 2017. Subglacial emplacement of tills and meltwater deposits at the base of overdeepened bedrock troughs. Sedimentology 64, 658-685. https://doi.org/10.1111/sed.1231910.1111/sed.12319
  6. Büchi, M.W., Graf, H.R., Haldimann, P., Lowick, S.E., Anselmetti, F.S., 2018. Multiple Quaternary erosion and infill cycles in overdeepened basins of the northern Alpine foreland. Swiss Journal of Geosciences 111, 133-167. https://doi.org/10.1007/s00015-017-0289-9(0123456789().,-volV)(0123456789().,-volV)10.1007/s00015-017-0289-9
  7. Burschil, T., Tanner, D.C., Reitner, J.M., Buness, H., Gabriel, G., 2019. Unravelling the shape and stratigraphy of a glacially-overdeepened valley with reflection seismic: the Lienz Basin (Austria) Swiss Journal of Geoscience 112, 341–355. https://doi.org/10.1007/s00015-019-00339-010.1007/s00015-019-00339-0
  8. Carey, J.M., Crutchley, G.J., Mountjoy, J.J., Petley, D.N., McSaveney, M.J., Lyndsell, B., 2019. Slow episodic movement driven by elevated pore-fluid pressures in shallow subaqueous slopes. Geomorphology 329, 99-107. https://doi.org/10.1016/j.geomorph.2018.12.03410.1016/j.geomorph.2018.12.034
  9. Carr, S.J., Rose, J., 2003. Till fabric patterns and significance: particle response to subglacial stress. Quaternary Science Reviews, 22, 1415-1426. https://doi.org/10.1016/S0277-3791(03)00125-210.1016/S0277-3791(03)00125-2
  10. Christianson, K., Jacobel, R.W., Horgan, H.J., Alley, R.B., Anandakrishnan, S., Holland, D.M., DallaSanta, K.J., 2016. Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from ice-penetrating radar. Journal of Geophysical Research: Earth Surface, 121, 1954-1983. https://doi.org/10.1002/2015JF00380610.1002/2015JF003806
  11. Clague, J.J., Ward, B., 2011. Pleistocene glaciation of British Columbia. In Developments in Quaternary Sciences 15. Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.) Elsevier. pp. 563-573. ISBN: 978-0-444-53447-7.10.1016/B978-0-444-53447-7.00044-1
  12. Clark, C.D., Stokes, C.R., 2003. The palaeo-Ice Stream Landsystem. In Evans, D.J.A. (Ed.), Glacial Landsystems (pp. 204-227): Arnold, London. https://doi.org/10.1002/jqs.826.10.1002/jqs.826
  13. Cohen, D., Gillet-Chaulet, F., Haeberli, W., Machguth, H., Fischer, U.H., 2018. Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum. The Cryo-sphere, 12, 2515-2544. https://doi.org/10.5194/tc-12-2515-201810.5194/tc-12-2515-2018
  14. Cowan, E.A., Christoffersen, P., Powell, R.D., 2012. Sedimentological signature of a deformable bed preserved beneath an ice stream in a Late Pleistocene glacial sequence, Ross Sea, Antarctica. Journal of Sedimentary Research, 82, 270-282. https://doi.org/10.2110/jsr.2012.2510.2110/jsr.2012.25
  15. Cowan, E. A., Christoffersen, P., Powell, R. D., Talarico, F.M., 2014. Dynamics of the late Plio–Pleistocene West Antarctic Ice Sheet documented in subglacial diamictites, AND-1B drill core. Global and Planetary Change, 119(Supplement C), 56-70. https://doi.org/10.1016/j.gloplacha.2014.05.01110.1016/j.gloplacha.2014.05.011
  16. Davies, D., Bingham, R.G., King, E.C., Smith, A.M., Bris-bourne, A.M., Spagnolo, M., Graham, A.G.C., Hogg, A.E., Vaughan, D.G., 2018. How dynamic are ice-stream beds? The Cryosphere, 12, 1615-1628. https://doi.org/10.5194/tc-12-1615-201810.5194/tc-12-1615-2018
  17. Diez, A., Matsuoka, K., Ferraccioli, F., Jordan, T.A., Corr, H.F., Kohler, J., Olesen, A.V., Forsberg, R., 2018. Basal settings control fast ice flow in the Recovery/Slessor/Bailey Region, East Antarctica. Geophysical Research Letters 45, 2706-2715. https://doi.org/10.1002/2017GL07660110.1002/2017GL076601
  18. Dowdeswell, J.A., Elverhøi, A., 2002. The timing of initiation of fast-flowing ice streams during a glacial cycle inferred from glaciomarine sedimentation. Marine Geology 188, 3-14 https://doi.org/10.1016/S0025-3227(02)00272-410.1016/S0025-3227(02)00272-4
  19. Ehlers, J., Gibbard, P.L., Hughes, P.D., 2011. Supplementary data to Quaternary glaciations – extent and chronology, a closer look. Developments in Quaternary Science 15, Elsevier, Amsterdam. https://booksite.elsevier.com/978044453447710.1016/B978-0-444-53447-7.00002-7
  20. Eyles, N., Arbelaez Moreno, L., Sookhan, S., 2018. Ice streams of the Late Wisconsin Cordilleran Ice Sheet in western North America. Quaternary Science Reviews 179, 87-122. https://doi.org/10.1016/j.quascirev.2017.10.02710.1016/j.quascirev.2017.10.027
  21. Evans, D.J., 2017. Till: A glacial process sedimentology. John Wiley and Sons. 400pp. ISBN – 9781118652596.10.1002/9781118652541
  22. Evans, D., Phillips, E., Hiemstra, J., Auton, C., 2006. Subglacial till: formation, sedimentary characteristics and classification. Earth-Science Reviews 78, 115-176. https://doi:10.1016/j.earscirev.2006.04.00110.1016/j.earscirev.2006.04.001
  23. Evenson, E.B., 1971. The relationship of macro- to micro-fabrics of tills and the genesis of glacial landforms in Jefferson County, Wisconsin. In: Goldthwait, R.P. (Ed.), Till, a symposium. Ohio State University Press, Columbus, pp. 345-364.
  24. Eyles, N., Arbelaez Moreno, L., Sookhan, S., 2018. Ice streams of the Late Wisconsin Cordilleran Ice Sheet in western North America. Quaternary Science Reviews 179, 87-122. https://doi.org/10.1016/j.quascirev.2017.10.02710.1016/j.quascirev.2017.10.027
  25. Fossen, H., Soliva, R., Ballas, G., Trzaskos, B., Cavalcante, C., Schultz, R.A., 2017. A Review of Deformation Bands in Reservoir Sandstones: Geometries, Mechanisms and Distribution, vol. 459 Geological Society, London, Special Publications SP459.4. https://doi.org/10.1144/SP459.410.1144/SP459.4
  26. Fossen, H., Cavalcante, G. C. G., Pinheiro, R. V. L., Archanjo, C., J. 2019. Deformation–progressive or multiphase? Journal of Structural Geology 125, 82-99. https://doi.org/10.1016/j.jsg.2018.05.00610.1016/j.jsg.2018.05.006
  27. Gao, C., McAndrews, J.H., Wang, X., Menzies, J., Turton, C.L., Wood, B.D., Pei, J., Kodors, C., 2012. Glaciation of North America in the James Bay Lowland, Canada, 3.5 Ma. Geology 40, 975-978. https://doi:10.1130/G33092.110.1130/G33092.1
  28. Haeberli, W., Penz, U., 1985. An attempt to reconstruct glaciological and climatological characteristics of 18 ka BP Ice Age glaciers in and around the Swiss Alps. Zeitschrift für Gletscherkunde und Glazialgeologie, 21, 351-361.
  29. Halberstadt, A.R.W., Simkins, L.M., Anderson, J.B., Prothro, L.O., Bart, P.J., 2018. Characteristics of the deforming bed: till properties on the deglaciated Antarctic continental shelf. Journal of Glaciology, 1-14. https://doi:10.1017/jog.2018.9210.1017/jog.2018.92
  30. Hart, J.K., Martinez, K., Basford, P.J., Clayton, A.I., Robson, B.A., Young, D.S., 2019. Surface melt driven summer diurnal and winter multi-day stick-slip motion and till sedimentology. Nature communications 10, 1-11. https://doi:10.1038/s41467-019-09547-610.1038/s41467-019-09547-6
  31. Hiemstra, J.F., van der Meer, J.J.M., 1997. Pore-water controlled grain fracturing as indicator for subglacial shearing in tills. Journal of Glaciology 43: 446-454. https://doi.org/10.3189/S002214300003503610.3189/S0022143000035036
  32. Hoffmann, K., Piotrowski, J. A., 2001. Till melange at Amsdorf, central Germany; sediment erosion, transport and deposition in a complex, soft-bedded subglacial system. Sedimentary Geology 140, 215-234. https://doi.org/10.1016/S0037-0738(00)00184-610.1016/S0037-0738(00)00184-6
  33. Keller, B., 1996. Lithofazies-Codes für die Klassifikation von Lockergesteinen. Mitteilungen der Schweizerischen Gesellschaft für Boden- und Felsmechanik 132, 5–12.
  34. Klasen, N., Fiebig, M., Preusser, R., Reitner, J.M., Radtke, U., 2007. Luminescence dating of proglacial sediments from the Eastern Alps. Quaternary International 164-165, 21-32. https://doi:10.1016/j.quaint.2006.12.00310.1016/j.quaint.2006.12.003
  35. Lee, J.R., Phillips, E.R., 2008. Progressive soft sediment deformation within a subglacial shear zone—a hybrid mosaic–pervasive deformation model for Middle Pleistocene glaciotectonised sediments from eastern England. Quaternary Science Reviews 27, 1350-1362. https://doi.org/10.1016/j.quascirev.2008.03.00910.1016/j.quascirev.2008.03.009
  36. Lindgren, A., Hugelius, G., Kuhry, P., Christensen, T.R., Vandenberghe, J., 2016. GIS-based Maps and Area Estimates of Northern Hemisphere Permafrost Extent during the Last Glacial Maximum. Permafrost and Periglacial Processes 27, 6-16. https://doi.org/10.1002/ppp.185110.1002/ppp.1851
  37. Linner, M., Reitner, J. M., Pavlik, W., 2013. Geologische Karte der Republik Österreich 1:50.000 Blatt 179 Lienz, Geologische Bundesanstalt, Wien.
  38. Margold, M., Jansson, K.N., Kleman, J., Stroeven, A.P., Clague, J.J., 2013. Retreat pattern of the Cordilleran Ice Sheet in central British Columbia at the end of the last glaciation reconstructed from glacial meltwater land-forms. Boreas 42, 830-847. http://dx.doi.org/10.1016/j.quascirev.2014.06.02710.1016/j.quascirev.2014.06.027
  39. Menzies, J., 1990. Sand Intraclasts within a diamicton mélange, southern Niagara Peninsula, Ontario, Canada. Journal of Quaternary Science 5, 189-206.10.1002/jqs.3390050303
  40. Menzies, J., 2000. Micromorphological analyses of micro-fabrics and microstructures, indicative of deformation processes, in glacial sediments. In: Maltman, A.J. Hubbard, B., Hambrey, M.J. (Eds.), Deformation of Glacial Materials. Geological Society, London. pp. 245-258. https://doi.org/10.1144/GSL.SP.2000.176.01.1910.1144/GSL.SP.2000.176.01.19
  41. Menzies, J., 2012. Strain pathways, till internal architecture and microstructures – perspectives on a general kinematic model – a ‘blueprint’ for till development. Quaternary Science Reviews 50, 105-124. https://doi.10.1016/j.quascirev.2012.07.01210.1016/j.quascirev.2012.07.012
  42. Menzies, J., van der Meer, J.J.M., 2018. Micromorphology and Microsedimentology of Glacial Sediments Chapter 21. In: Menzies, J., van der Meer, J.J.M. (Eds.), Past Glacial Environments (Second Edition). Elsevier, pp. 753-806. https://doi.org/10.1016/B978-0-08-100524-8.00036-110.1016/B978-0-08-100524-8.00036-1
  43. Menzies, J., Reitner, J.M., 2016. Microsedimentology of ice stream tills from the Eastern Alps, Austria–a new perspective on till microstructures. Boreas 45, 804-827. https://doi.org/10.1111/bor.1218910.1111/bor.12189
  44. Menzies, J., Reitner, J.M., 2019. Microstructures, sub-glacial till deposition, and shear band development revealing up-section changes in shear–A study from Weissbach, Austria. Proceedings of the Geologists’ Association 130/2, 196-209. https://doi.org/10.1016/j.pgeola.2018.11.00110.1016/j.pgeola.2018.11.001
  45. Menzies, J., Gao, C., Kodors, C., 2013. Microstructural analyses of a Middle Pliocene till from the James Bay Lowlands, Canada—evidence of “potential” fast ice streaming. Proceedings of the Geologists’ Association 124, 790-801. http://dx.doi.org/10.1016/j.pgeola.2012.07.00210.1016/j.pgeola.2012.07.002
  46. Menzies, J., van der Meer, J.J.M., Ravier, E., 2016. A kinematic unifying theory of microstructures in subglacial tills. Sedimentary Geology 344, 57-70. http://dx.doi.org/10.1016/j.sedgeo.2016.03.02410.1016/j.sedgeo.2016.03.024
  47. Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., Wick, L., 2007. Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quaternary Research 68, 284-302. https://doi.org/10.1016/j.yqres.2007.07.00210.1016/j.yqres.2007.07.002
  48. Narloch, W., Phillips, E.R., Piotrowski, J.A., Ćwiek, M., 2020. Patterns of deformation within a subglacial shear zone: Implications for palaeo-ice stream bed evolution. Sedimentary Geology 39, 105569. https://doi.org/10.1016/j.sedgeo.2019.10556910.1016/j.sedgeo.2019.105569
  49. Passchier, C.W., Trouw, R.A.J., 1996. Micro-tectonics. Berlin-Heidelberg, Germany: Springer Verlag. 289pp. ISBN-10 3-540-64003-7
  50. Philit, S., Soliva, R., Castilla, R., Ballas, G., Taillefer, A., 2018. Clusters of cataclastic deformation bands in porous sandstones. Journal of Structural Geology 114, 235-250. https://doi.org/10.1016/j.jsg.2018.04.01310.1016/j.jsg.2018.04.013
  51. Phillips, E., 2006. Micromorphology of a debris flow deposit: evidence of basal shearing, hydrofracturing, liquefaction and rotational deformation during emplacement. Quaternary Science Reviews 25, 720-738. https://doi.org/10.1016/j.quascirev.2005.07.00410.1016/j.quascirev.2005.07.004
  52. Phillips, E., van der Meer, J.J.M., Ferguson, A., 2011. A new ‘microstructural mapping’ methodology for the identification, analysis and interpretation of polyphase deformation within subglacial sediments. Quaternary Science Reviews 30, 2570-2596. http://dx.doi.org/10.1016/j.quascirev.2011.04.02410.1016/j.quascirev.2011.04.024
  53. Phillips, E., Spagnolo, M., Pilmer, A.C., Rea, B.R., Piotrowski, J.A., Ely, J.C., Carr, S., 2018. Progressive ductile shearing during till accretion within the deforming bed of a palaeo-ice stream. Quaternary Science Reviews 193, 1-23. https://doi.org/10.1016/j.quascirev.2018.06.00910.1016/j.quascirev.2018.06.009
  54. Piotrowski, J.A., Larsen, N.K., Junge, F.W., 2004. Reflections on soft subglacial beds as a mosaic of deforming and stable spots. Quaternary Science Reviews 23, 993-1000. http://dx.doi.org/10.1016/j.quascirev.2004.01.00610.1016/j.quascirev.2004.01.006
  55. Prothro, L.O., Simkins, L.M., Majewski, W., Anderson, J.B., 2018. Glacial retreat patterns and processes determined from integrated sedimentology and geomorphology records. Marine Geology 395,104-119. https://doi.org/10.1016/j.margeo.2017.09.01210.1016/j.margeo.2017.09.012
  56. Reinardy, B., 2012. Streaming flow of an Antarctic Peninsula palaeo-ice stream by both basal sliding and deformation of substrate. Quaternary International 279-280, 397. https://doi.org10.1016/j.quaint.2012.08.125310.1016/j.quaint.2012.08.1253
  57. Reinardy, B.T., Larter, R.D., Hillenbrand, C.-D., Murray, T., Hiemstra, J.F., Booth, A.D., 2011. Streaming flow of an Antarctic Peninsula palaeo-ice stream, both by basal sliding and deformation of substrate. Journal of Glaciology 57, 596-608. https://doi.org/10.3189/00221431179740975810.3189/002214311797409758
  58. Reitner, J., 2003. Bericht 1998/1999 über geologische Aufnahmen im Quartär auf Blatt 179 Lienz. Jahrbuch der Geologischen Bundesanstalt, 143/3, 516-524.
  59. Reitner, J.M., 2005. Quartärgeologie und Landschaftsentwicklung im Raum Kitzbühel – St. Johann i. T. – Hopfgarten (Nordtirol) vom Riss bis in das Würm-Spätglazial (MIS 6-2). Doctoral Thesis, Universität Wien, Vienna, Austria, 190pp. https://doi.org/10.13140/rg.2.1.2505.6405
  60. Reitner J.M., 2007. Glacial dynamics at the beginning of Termination I in the Eastern Alps and their stratigraphic implications. Quaternary International 164-165, 64-84. https://doi.org/10.1016/j.quaint.2006.12.01610.1016/j.quaint.2006.12.016
  61. Reitner, J.M., Linner, M., 2009. Formation and preservation of large scale toppling related to alpine tectonic structures-Eastern Alps. Austrian Journal of Earth Sciences 102, 69-80
  62. Reitner, J.M., Gruber, W., Römer, A., Morawetz, R., 2010. Alpine overdeepenings and paleo-ice flow changes: an integrated geophysical-sedimentological case study from Tyrol (Austria). Swiss Journal of Geoscience 103, 385–405. https://doi.org/10.1007/s00015-010-0046-910.1007/s00015-010-0046-9
  63. Reitner, J.M., Ivy-Ochs, S., Drescher-Schneider, R., Hajdas, I., Linner, M., 2016. Reconsidering the current stratigraphy of the Alpine Lateglacial: Implications of the sedimentary and morphological record of the Lienz area (Tyrol/Austria). E&G Quaternary Science Journal 65, 113–144. https://doi.org/10.3285/eg.65.2.0210.3285/eg.65.2.02
  64. Rice, J.M., Paulen, R.C., Menzies, J., McClenaghan, M.B., 2014. Micromorphological descriptions of till from pit K-62, Pine Point mining district, Northwest Territories; Geological Survey of Canada, Open File 7526, 30 p. https://doi:10.4095/29347810.4095/293478
  65. Rice, J., Menzies, J., Paulen, R.C., McClenaghan, M.B., 2018. Microsedimentological evidence of vertical fluctuations in subglacial stress from the northwest sector of the Laurentide Ice Sheet, Northwest Territories, Canada. Canadian Journal of Earth Sciences 56, 363-379. https://doi:10.1139/cjes-2018-020110.1139/cjes-2018-0201
  66. Seguinot, J., Rogozhina, I., Stroeven, A.P., Margold, M., Kleman, J., 2016. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle. The Cryosphere 10, 639–664. https://doi:10.5194/tc-10-639-201610.5194/tc-10-639-2016
  67. Seguinot, J., Ivy-Ochs, S., Jouvet, G., Huss, M., Funk, M., Preusser, F., 2018. Modelling last glacial cycle ice dynamics in the Alps. The Cryosphere 12, 3265-3285. https://doi.org/10.5194/tc-12-3265-201810.5194/tc-12-3265-2018
  68. Schoneveld, C., 1977. A study of some typical inclusion patterns in strongly paracrystalline-rotated garnets. Tectonophysics 39, 453-47110.1016/0040-1951(77)90109-3
  69. Schultz, R., Siddharthan, R., 2005. A general framework for the occurrence and faulting of deformation bands in porous granular rocks. Tectonophysics 411, 1-18. https://doi.org/10.1016/j.tecto.2005.07.00810.1016/j.tecto.2005.07.008
  70. Simpson, C., De Paor, D.G., 1993. Strain and kinematic analysis in general shear zones. Journal of Structural Geology 15, 1-20.10.1016/0191-8141(93)90075-L
  71. Smith, A.M., Jordan, T.A., Ferraccioli, F., Bingham, R.G., 2013. Influence of subglacial conditions on ice stream dynamics: Seismic and potential field data from Pine Island Glacier, West Antarctic. Journal of Geophysical Research 118, 1471–1482, https://doi.org/10.1029/2012JB00958210.1029/2012JB009582
  72. Spagnolo, M., Phillips, E., Piotrowski, J.A., Rea, B.R., Clark, C.D., Stokes, C.R., Carr, S.J., Ely, J.C., Ribolini, A., Wysota, W., Szuman, I., 2016. Ice stream motion facilitated by a shallow-deforming and accreting bed. Nat Commun 7, 11p. https://doi.org/10.1038/ncomms1072310.1038/ncomms10723
  73. Stokes, C.R., 2011. Palaeo-ice stream. In: Encyclopedia of Snow, Ice and Glaciers.10.1007/978-90-481-2642-2_630
  74. Springer, Dordrecht, Netherlands, pp. 127-128. ISBN 978-90-481-2642-2
  75. Stokes, C.R., 2018. Geomorphology under ice streams: Moving from form to process. Earth Surface Processes and Landforms 43, 85-123. https://doi.org/10.1002/esp.425910.1002/esp.4259
  76. Stumpf, A.J., Broster, B.E., Levson, V.M., 2000. Multiphase flow of the late Wisconsinan cordilleran ice sheet in western Canada. Geol. Soc. Am. Bull. 112, 1850-1863. https://doi.org/10.1130/0016-7606(2000)112<1850:MFOTLW>2.0.CO;210.1130/0016-7606(2000)112<;1850:MFOTLW>2.0.CO;2
  77. Swift, D.A., Cook, S.J., Graham, D.J., Midgley, N.G., Fallick, A.E., Storrar, R., Toubes Rodrigo, M., Evans, D.J.A., 2018. Terminal zone glacial sediment transfer at a temperate overdeepened glacier system. Quaternary Science Reviews 180, 111-131. https://doi.org/10.1016/j.quascirev.2017.11.02710.1016/j.quascirev.2017.11.027
  78. Thomason, J.F., Iverson, N.R., 2006. Microfabric and microshear evolution in deformed till. Quaternary Science Reviews 25, 1027-1038. https://doi.org/10.1016/j.quascirev.2005.09.006.10.1016/j.quascirev.2005.09.006
  79. van der Meer, J.J.M., 1993. Microscopic evidence of sub-glacial deformation. Quaternary Science Reviews 12, 553-587.10.1016/0277-3791(93)90069-X
  80. van der Meer, J.J.M., 1996. Micromorphology. In: Menzies, J (Ed.), Past Glacial Environments - sediments, forms and techniques. Butterworth-Heineman, Oxford. Chapter 12, pp. 335-356. ISBN: 0750623527.
  81. van der Meer, J.J.M., 1997. Particle and aggregate mobility in till: microscopic evidence of subglacial processes. Quaternary Science Reviews 16, 827-831.10.1016/S0277-3791(97)00052-8
  82. van der Meer, J.J.M., Menzies, J. 2011. The micromorphology of unconsolidated sediments. Sedimentary Geology 238, 213-232. https://doi.org/210.210.216/j.sedgeo.201110.1016/j.sedgeo.2011.04.013
  83. van Husen, D., 1977. Zur Fazies und Stratigraphie der jungpleistozänen Ablagerungen im Trauntal. Jahrbuch der Geologischen Bundesanstalt, 120/1, 1-130.
  84. van Husen, D., 1987. Die Ostalpen in den Eiszeiten. Geologische Bundesantalt. 27pp.
  85. van Husen, D., 2000. Geological processes during the Quaternary. Mitteilungen der Österreichischen Geologischen Gesellschaft 92(1999), 135-156. ISSN 0251-7493
  86. van Husen, D., Reitner, J.M., 2011. An Outline of the Quaternary Stratigraphy of Austria. E&G – Quaternary Science Journal 60, 366-387. https://doi.org/10.3285/eg.60.2-3.0910.3285/eg.60.2-3.09
  87. Vaughan-Hirsch, D.P., Phillips, E., Lee, J.R., Hart, J.K., 2013. Micromorphological analysis of poly-phase deformation associated with the transport and emplacement of glaciotectonic rafts at West Runton, north Norfolk, UK. Boreas 42, 376-394. https://doi.org/10.1111/j.1502-3885.2012.00268.x10.1111/j.1502-3885.2012.00268.x
  88. Walter, F., Chaput, J., Lüthi, M.P., 2014. Thick sediments beneath Greenland’s ablation zone and their potential role in future ice sheet dynamics. Geology 42, 487-490. https://doi.org/10.1130/G35492.110.1130/G35492.1
  89. Winsborrow, M.C.M., Clark, C.D., Stokes, C.R., 2010. What controls the location of ice streams? Earth-Science Reviews 103, 45-59. https://doi.org/10.1016/j.earscirev.2010.07.00310.1016/j.earscirev.2010.07.003
  90. Wirsig, C., Zasadni, J., Christl, M., Akçar, N., Ivy-Ochs, S., 2016. Dating the onset of LGM ice surface lowering in the High Alps. Quaternary Science Reviews 143, 37-50. https://doi.org/10.1016/j.quascirev.2016.05.00110.1016/j.quascirev.2016.05.001
DOI: https://doi.org/10.17738/ajes.2020.0005 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 71 - 86
Submitted on: Dec 18, 2019
Accepted on: Mar 26, 2020
Published on: Jul 13, 2020
Published by: Austrian Geological Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Jürgen M. Reitner, John Menzies, published by Austrian Geological Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.